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dans la recherche scientifique et un raisonnement constructif. Je lui exprime ici toute

ma gratitude pour le sujet qu’il m’a proposé et surtout, son suivi permanent avec
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Mes remerciements aussi sincères que profonds vont également à l’endroit du pro-
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Une fois de plus un grand merci au professeur Benjamin MAMPASSI, responsable

de l’école doctorale de mathématiques et informatique (EDMI) , qui m’a accueilli au
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pensées. Qu’il ne soit permis de citer entre autre : Pr Hilaire Nkounkou, Dr Jean

Marie Ntanganda, Dr Franck Davhys Reval Langa et Mohamed Taki Abdoul Karim.
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Résumé

Un grand nombre des systèmes dynamiques est gouverné par des paramètres

dont les descriptions sont complexes. Dans la plupart des cas, ces paramètres sont

pratiquement difficiles à identifier. Pourtant, il est bien connu que de leur description

en dépend le niveau de compréhension que l’on peut avoir sur les différents processus

d’un système dynamique.

Diverses études révélent que le paramètre retard est celui qui peut permettre

de comprendre le mieux les comportements asymptotiques au voisinage d’états pri-

vilégiés des systèmes dynamiques. Notre travail de thèse s’incrit dans l’optique de

la détermination des paramètres à retards spécifiques pour lesquels toute pertur-

bation infinitésimale entraine un changement qualitatif sur le comportement global

du système. A cet effet, nous étudions des systèmes dynamiques gouvernés par des

équations différentielles à multi - retards. Et à l’aide de la théorie des bifurcations de

Hopf, nous proposons un schéma numérique permettant de calculer des paramètres

retards critiques décrivant la dynamique transitoire des états asymptotiquement

stables vers ceux qui sont instables.

La théorie des bifurcations de Hopf est largement développée dans la littérature.

Dans beaucoup de situations, l’ensemble des points de bifurcation de Hopf est

complètement caractérisé. Cependant, lorsque les paramètres considérés sont des

retards, les points de bifurcation de Hopf ainsi que leurs directions de bifurcation

sont difficiles à déterminer. Bien qu’il existe quelques résultats ”satisfaisants” pour

des systèmes différentiels à un ou à deux retards scalaires, le problème de la ca-
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ractérisation des points de bifurcation de Hopf reste encore un champ ouvert pour

des systèmes à retards multiples.

Au vu de ces difficultés, nous développons donc dans cette thèse une approche

basée sur la théorie des courbes denses. Précisément, l’idée fondamentale est de

construire une courbe remplissant, au sens de la densité, l’espace des paramètres

à retards et ainsi de pouvoir se ramener à un problème à d’un seul paramètre.

Grâce à ce procédé nous formulons un schéma algorithmique permettant de générer

des points de bifurcation de Hopf. Nous appliquons cette étude à un problème de

contrôle thérapeutique du VIH/ SIDA. Nous formulons ce problème par un système

différentiel entrée - état avec quatre paramètres retards portant sur la réponse de

certains déterminants de la dynamique de la maladie. La simulation numérique des

scénarios thérapeutiques est menée à partir du schéma numérique que nous avons

développé dans cette thèse. Des résultats obtenus sont satisfaisants quant à l’in-

terprétation des phases transitoires de la maladie en présence ou sans traitement.

En somme, l’approche développée dans cette thèse ouvre une voie vers une ca-

ractérisation complète des points de bifurcation de Hopf pour des systèmes à multi

- retards.

Mots clés : Systèmes dynamiques multi - retards ; Bifurcation de Hopf ; Etats

oscillatoires ; Dynamique transitoire en épidémiologie.
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Notations

Ensembles et nombres

– R : ensemble des nombres réels.

– R+ : ensemble des nombres réels positifs ou nuls.

– C : ensemble des nombres complxes.

– Rn : espace vectoriel de dimension n construit sur un corps des réels.

– [a, b] : intervalle fermé de R d’extrémités a et b.

– ]a, b[ : intervalle ouvert de R d’extrémités a et b.

– [a, b[ ou [a, b) : intervalle semi - ouvert de R d’extrémités a et b.

– [1, . . . , n] : entiers naturels de 1 à n.

– C(I, Rn) ou bien C : ensemble des fonctions continues sur I à valeurs dans Rn.

– Ca : ensemble des fonctions continues bornées par une constante réelle a > 0.

– K : ensemble des fonctions continues de [0, a)→ [0, ∞) strictement croissantes

et nulle en zéro.

– K∞ : ensemble des fonctions de [0, ∞) → [0, ∞) de classe K tendant vers

l’infini.

– KL : une fonction β : [0, a) × [0, ∞) est dite de classe KL si, pour s fixé,

la fonction β(r, .) est décroissante par rapport à la deuxième variable avec

β(r, s)→ 0 quand s→ 0.

– t ∈ R+ : variable temporelle.

– ẋ =
dx

dt
: dérivée de la variable x par rapport au temps.

– ẍ = d2x
dt2

: seconde dérivée de x par rapport au temps.
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Vecteurs et fonctions

– xT : transposé du vecteur x.

– x ∈ Rn : vecteur de composantes xi.

– x(t, t0, ϕ0) ∈ Rn : vecteur de Rn représentant l’état d’un système à l’instant

t ayant pour état ϕ0 ∈ C à l’instant initiale t0.

– xt : fonction de classe C définie par xt(θ) = x(t + θ), ∀ θ ∈ [−τ, 0] où τ > 0

est donné.

– |.| : valeur absolue d’un nombre réel ou module d’un nombre complexe.

– ‖.‖ : norme sur Rn.

– ‖.‖C : norme sur C définie par ∀ϕ ∈ C : ‖ϕ‖C = sup
θ∈[−τ, 0]

‖ϕ(θ)‖.

Matrices

– AT : transposée de la matrice A.

– A > 0 (respectivement A < 0) : A définie positive (respectivement définie

négative).

– ‖A‖ : norme euclidienne de la matrice A : ‖A‖ = sup
u ∈ Rn, u 6= 0

‖Au‖
‖u‖

.

– In : matrice identité d’ordre n.
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1996 à 2004. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Les points d’équilibre du système (5.24)-(5.30) relatifs à un patient
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(d). Les figures (e) et (f) représentent un cycle limite instable pour

α = −0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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2.1 Existence et unicité . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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Chapitre 1

Introduction générale

Un constat peut être fait que, durant ces dernières années, la part de la modélisa-

tion mathématique en épidémiologie n’a jamais céssée d’augmenter. Les travaux les

plus récents sur l’épidémiologie présentent des modèles mathématiques décrits à

l’aide des systèmes dynamiques multi - retards. L’étude des systèmes à retard est

depuis fort longtemps un sujet de grande préoccupation. Cela résulte du fait que

la présence de retards est fréquemment constatée en pratique et peut affecter les

performances des systèmes de façon très importante. Ne pas en tenir compte peut

fausser considérablement l’analyse des phénomènes étudiés. Depuis quelques années,

de nombreux résultats d’analyse de stabilité ou de stabilisation pour des systèmes

non linéaires à retard ont été obtenus. Cependant, en raison des difficultés inhérentes

à ces problèmes, beaucoup reste encore à faire.

D’une manière générale, les retards sont conséquences du temps de réaction des

systèmes en réponse à des actions pouvant influencer leur évolution. Leur introduc-

tion dans des modèles entrâıne l’apparition de fluctuations avec des phases d’ex-

plosion, latentes ou d’extinction. On peut grossièrement situer les équations à re-

tard comme étant à mi-chemin entre les équations différentielles ordinaires et les

équations aux dérivées partielles. La différence avec les équations différentielles or-

dinaires est que les données initiales sont elles mêmes des fonctions. Ceci nécessite
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1.1. Aperçu historique

une étude mathématique plus élaborée par rapport aux équations différentielles or-

dinaires.

Cette thèse s’intéresse à une étude quantitative et qualitative des équations

différentielles à retard en dimension finie ou infinie. Ces équations peuvent être

représentées par des équations différentielles non locales en temps : la connaissance

de la solution à un instant donné nécessite sa connaissance sur un intervalle de

temps dont la longueur est égale au retard. De façon spécifique, ce travail s’intéresse

aux aspects de stabilité, de comportement asymptotique, d’attractivité des solu-

tions bornées et périodiques. La théorie des bifurcations est abordée pour élucider

les changements qualitatifs de ces propriétés en fonctions des paramètres de re-

tard. Particulièrement, dans le cadre des systèmes épidémiologiques, cette théorie

permettrait de déterminer des solutions périodiques, quasi-périodiques, oscillatoires

ou chaotiques. De même, au sein des systèmes physiologiques, le chaos procurerait

une flexibilité de réponse accrue à différentes situations. Ainsi le rythme cardiaque

normal serait chaotique, ce qui permettrait au coeur de réagir efficacement à tout

effort.

1.1 Aperçu historique

L’épidémiologie est l’étude de la propagation de maladies chez l’homme et des fac-

teurs qui les influencent. Elle vise à la compréhension des causes, et à l’amélioration

de traitements et des moyens de prévention. L’apport des mathématiques se fait alors

dans un premier temps par le biais de la modélisation et ensuite par l’identification

des paramètres.

L’approche mathématique a été depuis fort longtemps utilisée pour modéliser la

dynamique des épidémiologies en s’appuyant sur les équations différentielles et les

systèmes des équations aux dérivées partielles. L’un des premiers modèles connus a

été développé par Bernoulli en 1760 dans le cadre de l’épidémiologie de la variole
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1.1. Aperçu historique

[56]. Les fondements de l’approche de l’épidémiologie basée sur les modèles compar-

timentaux ont été établis par des médecins de santé publique comme Sir Ronald

Ross, W. H. Hamer, W. O. Kermack et autres [37, 41, 60].

Ronald Ross peut être considéré comme le père fondateur de l’épidémiologie

actuelle. Il lui a été attribué un prix Nobel en 1902 pour sa preuve que le paludisme

était transmis par les anophèles. C’est lui, en 1911, qui a publié le premier modèle

dynamique de la transmission du paludisme. Il a prouvé qu’en dessous d’un certain

seuil de la population des moustiques le paludisme disparaissait.

La modélisation mathématique des maladies infectieuses est une science relati-

vement nouvelle. Bien que l’épidémiologie ait une longue histoire, c’est récemment

que les mathématiciens, les épidémiologistes, les immunologistes ont commencé à

collaborer pour créer des modèles susceptibles de prédire l’évolution des maladies.

Dans cette thèse, nous analysons certains modèles épidémiologiques comportant

des retards. Les retards jouent en effet un rôle important en biologie, plus parti-

culièrement en épidémiologie. Par exemple, dans le cas d’une maladie infectieuse, le

temps d’incubation, c’est - à - dire le temps entre le moment où l’individu est infecté

et le temps où il transmet cette maladie, joue un rôle important dans l’analyse de

la transmission.

L’étude des systèmes à retards a été l’objet de nombreux travaux en épidémiologie

durant ces dernières décennies. Même si l’étude des systèmes à retards date de près

d’un siècle, ce domaine reste toujours l’objet d’une recherche très active, comme

le montrent plusieurs monographies qui lui ont été consacrées. Les livres de Driver

(1977) [19] et de Pinney (1958) [57] contiennent de nombreux exemples d’équations

différentielles à retard (d′EDRs) qui sont apparus dans la litterature jusqu’aux

années soixante. Un grand nombre des références récentes, parmi lesquelles celles

de Stépan (1989) [65], Fowler (1997) [27], Epstein et Pojman (1998) [22], Murray

(2002) [49], Fall et al (2002) [25] et Beuter et al. (2003) [7] ont exploré différentes

EDRs en mécanique, en chimie et en biologie. Toutes ces études montrent qu’un
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retard peut conduire à des instabilités oscillantes.

Enfin, les EDRs soulèvent d’importantes questions d’ordre mathématiques. On peut

se référer notamment à Hale et Verduyn Lunel (1993) [32] et à Diekmann et al.

(1995) [16]. Parmis les articles de synthèse, on peut également citer Gopalsamy

(1992) [29] et Leping Sun (2005) [39]. Les systèmes à retards sont présents dans

des domaines très variés et la compréhension des processus qui régissent leur dy-

namique constitue une motivation fondamentale de recherche. Pour la plupart des

systèmes physiques, il a été généralement admis que le comportement du proces-

sus ne dépend que de l’état actuel. Bien que ce dernier ait été établi pour une

large classe de phénomènes physiques, de nombreux autres processus impliquent des

décalages ou des retards [47, 63, 64, 68, 69]. Ainsi, les techniques de modélisations

modernes utilisent des équations différentielles à retards comme un outil puissant

pour mieux décrire et comprendre la dynamique de ces systèmes [35]. Cependant,

l’utilisation des équations à retards, apporte plus de complexité mathématique dans

leurs études. Heureusement, au cours de cette dernière décennie, des progrès rapides

ont été réalisés dans ce domaine. De nouveaux outils, logiciels et des techniques

numériques efficaces ont ravivé l’intérêt pour ces équations [42].

1.2 Motivation

Les problèmes de stabilité et de stabilisation des équations à retards occupent

une place importante en théorie du contrôle en épidémiologie. Cette théorie s’efforce

d’apporter des résultats et des méthodes permettant de comprendre, d’analyser et

de résoudre des problèmes associés à des systèmes contrôlés. Ces systèmes ont des

variables qui permettent d’influencer sa dynamique et qui peuvent être ajustées.

L’un des domaines d’application est l’épidémiologie.

L’un des objectifs fondamentaux de l’épidémiologie est la construction des contrôles

suffisamment réguliers pouvant être utilisés en pratique. En ce qui concerne les
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systèmes sans retard, de nombreux outils performants peuvent permettre de construire

ces contrôles. Dans la plupart des cas on s’intéresse à ceux qui assurent la stabilité

des systèmes. Des outils de stabilité sont pour beaucoup d’entre eux bien mâıtrisés

pour les systèmes sans retard. Parmi ceux - ci, la stabilité de Lyapunov est la plus

utilisée. Par contre, la stabilité et la stabilisation des systèmes dynamiques multi

- retards sont encore des notions insuffisamment explorées en épidémiologie, bien

que des techniques de linéarisation permettent d’obtenir dans certains cas de bons

résultats. Dans le cas des systèmes non linéaires à retards, les outils d’analyse de sta-

bilité sont relativement peu nombreux. Le plus célèbre d’entre eux est certainement

la théorie de bifurcation de Hopf [40, 44, 68].

Nous nous proposons dans ce travail d’explorer de nouvelles propriétés qualita-

tives des bifurcations dans le cadre des systèmes dynamiques à retards applicables

pour des modèles épidémiologiques.

1.3 Problématique

Le problème de stabilité des systèmes à retards en épidémiologie est un sujet

transversal de grand intérêt à la fois par les mathématiciens, les physiciens et les

ingénieurs depuis le siècle dernier. Beaucoup de livres ont été écrits à ce sujet (

voir par exemple [30, 54]), à la fois sur le plan théorique et sur le plan pratique. Les

systèmes physiques sont souvent complexes et difficilement exploitables, notamment

pour des systèmes à retards. Le grand problème de stabilité est la représentation

de ces systèmes physiques avec une précision suffisante et un modèle de structure

simple.

En épidémiologie, pour décrire le comportement d’un système à retards, une hy-

pothèse communément faite est la linéarité du système du fait que les techniques

d’analyse des modèles linéaires ont été largement développées dans la littérature.

Cependant, l’hypothèse de linéarité n’est vérifiée que dans une plage de fonction-
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nement restreinte autour d’un point d’équilibre du système. Les performances du

modèle se dégradent dès lors qu’on s’en éloigne et la recherche d’un modèle plus

adapté et notamment non linéaire à retards devient plus que nécessaire.

De façon générale, la connaissance, entière ou partielle, des paramètres retards

d’un système dynamique est une exigence importante. Sur un plan pratique, cette

exigence s’avère difficile à satisfaire directement. Ceci est dû, d’une part, au fait que

les retards n’ont pas toujours une signification physique et leurs mesures directes

sont souvent difficiles à réaliser. D’autre part, lorsqu’un retard existe physiquement,

sa mesure peut être délicate à effectuer d’un point de vue technique (précision in-

suffisante).

En épidémiologie, il est souvent souhaitable d’introduire un contrôle optimal

afin de réduire les instabilités et le chaos dans les solutions. Nous nous proposons

d’aborder ces problèmes par une approche numérique qui consistera à déterminer les

points de bifurcations de Hopf des systèmes différentiels linéaires multi- retards du

système étudié en fonction des entrées connues, des sorties et du modèle dynamique

de celui-ci.

De façon spécifique, ce travail s’intéresse à une classe particulière des systèmes, dit

systèmes dynamiques multi - retards pour lesquels notre étude se focalisera à la

détermination des propriétés asymptotiques des solutions.

La problématique fondamentale de cette thèse est consacrée à l’établissement d’une

dynamique transitoire pour des systèmes multi - retards afin de contrôler leurs

impacts. Théoriquement ces phases transitoires sont très difficiles à établir pour

des systèmes dynamiques à plusieurs variables et multi - retards. Des approches

numériques existantes ne permettent pas une bonne caractérisation des phases tran-

sitoires et sont inefficaces pour de systèmes à grand nombre de variables. Notre

contribution dans cette thèse consistera à présenter de nouvelles approches pour

la détermination des points de bifurcations de Hopf des systèmes différentiels non

linéaires multi- retards.
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1.4 Organisation de ce mémoire

Les travaux de cette thèse s’articulent autour de cinq chapitres. Le premier

chapitre donne un bref aperçu sur l’état de l’art et les motivations de la thèse.

Dans le deuxième chapitre nous définissons les concepts généraux utilisés tout au

long de ce mémoire de thèse. Nous abordons ensuite au troisième chapitre des no-

tions spécifiques aux systèmes non linéaires à retards. Nous développons plus par-

ticulièrement des concepts liés à la dynamique chaotique et à la bifurcation. Dans

ce chapitre nous présentons aussi des techniques classiques de base de l’analyse des

systèmes à retards, à savoir la stabilité et la stabilisation, ainsi que leurs avantages

et inconvénients. Dans le quatrième chapitre nous faisons un tour d’horizon général

sur la simulation numérique des systèmes dynamiques à multi- retards, l’intérêt de

leur simulation et les approches numériques existantes dans la littérature. Enfin, l’es-

sentiel de notre contribution est developpé dans ce chapitre. Le cinquième chapitre

est consacré à l’analyse théorique et numérique de quelques systèmes dynamiques

issus de l’épidémiologie. Une conclusion générale et les perspectives de ce travail

sont données au dernier chapitre.

Ce travail a fait l’objet de trois articles publiés dans des journaux scientifiques

indexés par des abstracts [28, 43, 48].
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Chapitre 2

Aperçu général des systèmes

dynamiques

Un système dynamique est défini comme un système classique dont l’évolution

au cours du temps est à la fois :

– causale (son avenir ne dépend que de ses états antérieurs et présents), et

– déterministe, c’est - à - dire que son état initial va correspondre à un et un

seul état futur.

Une telle définition exclut, conventionnellement, tout système bruité dont l’évolution

est aléatoire et qui intrinséquement relève de la théorie des probabilités. Les systèmes

dynamiques peuvent être représentés par des modèles à temps continus, généralement

définis par des équations différentielles ordinaires, ou par des modèles à temps dis-

cret qui sont définis par des équations discrètes.

Dans ce chapitre, nous donnons des notions de base sur l’étude qualitative des

systèmes dynamiques. Nous nous focaliserons essentiellement sur des systèmes gou-

vernés par des équations différentielles ordinaires. On peut se référer à [19, 31, 33, 57]

pour des exposés plus exhaustifs.

Formellement, dans le cas continu, un système dynamique peut être défini par une
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application

ϕ : R+ × U → Rn

(t, x) 7→ ϕ(t, x)

vérifiant

ϕ(t0, x0) = x0 (2.1)

ϕ(t2, ϕ(t1, x)) = ϕ(t1 + t2, x) (2.2)

où U est un ouvert de Rn, n > 0.

Noter que l’application

t 7→ ϕ(t, x0)

définit donc une trajectoire décrivant l’évolution d’un système dont l’état initial est

x0. L’application ϕ est appelée flot et elle décrit toutes les évolutions possibles d’un

système dynamique. Il est établi qu’ étant donné un flot ϕ d’un système dynamique,

pour chaque état initial x0 ∈ U , l’application t 7→ ϕ(t, x0) est solution d’un problème

de Cauchy de la forme 
dx

dt
= f(t, x) t ≥ t0

x(t0) = x0.

(2.3)

Dans toute la suite nous noterons parfois x(t) ou x(t; t0, x0) une solution du

problème (2.3) si nous supposons en outre qu’elle est unique. Le résultat suivant

est utile pour l’étude qualitative des solutions du problème (2.3).

Proposition 2.1 [4]

Si l’application f est continue sur R+ × U alors pour tout (t0, x0) ∈ R+ × U le

problème (2.3) est équivalent à l’équation intégrale

x(t) = x0 +

∫ t

t0

f(s, x(s))ds. (2.4)

�
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Pour sa maniabilité, l’équation intégrale (2.4) est souvent utilisée au lieu du problème

(2.3), par exemple pour les preuves d’existence et d’unicité de la solution.

2.1 Existence et unicité

Nous nous intéressons, ici, à l’étude de l’existence et de l’unicité des solutions

des systèmes dynamiques gouvernés par les systèmes de la forme (2.3). Un résultat

fondamental de l’unicité de la solution de (2.3) est donnée par le théorème ci - après.

Théorème 2.1 (Unicité) [4]

Si f est continue et si l’application x 7→ f(t, x) est localement lipschitzienne alors

le problème (2.3) admet une solution unique.

Cf [4] pour la preuve du théorème 2.1.

Définition 2.1

Soient x une solution de l’équation (2.3) et I ⊂ R un intervalle sur lequel x est

définie.

– Une fonction x̃ est un prolongement de x si elle définie sur un intervalle Ĩ % I,

cöıncide avec x sur I, et vérifie la relation (2.3) sur Ĩ.

– La solution x est dite maximale 1 si elle n’admet pas de prolongement. Dans

ce cas l’intervalle I est dite intervalle maximal d’existence de la solution x.

L’existence d’une solution maximale prolongeant toute solution est une conséquence

du Lemme de Zorn [55]. L’intervalle maximal d’existence d’une solution est toujours

ouvert.

Corollaire 2.1 [4]

Soient x une solution maximale de l’équation (2.1) et I =]a, b[ son intervalle maxi-

mal d’existence. Alors x(t) tend vers le bord de U lorsque t tend vers a ou vers b.

�

1. on dit aussi non prolongeable
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Théorème 2.2 (Cauchy - Lipschitz) [4]

Soit n ∈ N∗, I un intervalle ouvert de R, Ω un ouvert de Rn et

f : I × Ω→ Rn

(t, x) 7→ f(t, x)

une fonction continue et localement lipschitzienne en x, c’est - à - dire que, pour

tout compact K ⊂ I × Ω, il existe L > 0 tel que

‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖, ∀ (t, x1), (t, x2) ∈ K

1. (Existence et unicité locale)

Pour tout (t0, x0) ∈ I × Ω, il existe (a, b) ⊂ I contenant t0, et une unique

solution x ∈ C1
(

(a, b), Rn
)

du problème de Cauchy


dx

dt
= f(t, x), t ∈ (a, b)

x(t0) = x0

(2.5)

2. (Unicité globale en temps)

Pour tout (t0, x0) ∈ I × Ω, pour tous a, b ∈ R vérifiant a < t0 < b, il existe

au plus une fonction x ∈ C1
(

(a, b), Rn
)

du problème de Cauchy (2.5).

Théorème 2.3 (Existence globale en temps)

1. (Critère de prolongement, explosion en temps fini)

Soit f : (a, b)× Rn → R continue sur un intervalle J =]T∗, T
∗[.

x une solution maximale de
dx

dt
= f(t, x). Alors

• ou bien T ∗ = b (resp. T∗ = a),
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• ou bien T ∗ < b (resp. T∗ > a) et alors x n’est pas bornée au voisinage de

T ∗ (resp. T∗).

2. (Condition suffisante d’existence globale)

Soit f : R× Rn → Rn continue.

On suppose qu’il existe M0, M1 ∈ L1
loc

(
R, R+

)
telles que

‖f(t, x)‖ ≤M0(t) +M1(t)‖x‖, ∀ (t, x) ∈ R× Rn

alors pour tout (t0, x0) ∈ R× Rn, la solution maximale de


dx

dt
= f(t, x),

x(t0) = x0,

est définie sur tout R. �

La preuve du théorème 2.3 nécessite le Lemme de Gronwall, lequel est particulièrement

fondamental dans l’étude des équations différentielles.

Lemme 2.1 (Gronwall)

Soit ϕ ∈ C0
(

[a, b], R+
)

.

On suppose qu’il existe A > 0, u ∈ L1
(

(a, b), R+
)

telles que

ϕ(t) ≤ A+

∫ t

a

u(s)ϕ(s)ds, ∀ t ∈ [a, b]

alors

ϕ(t) ≤ Ae
∫ t
a u(s)ds, ∀ t ∈ [a, b].

Preuve

La fonction F définie par

F (t) := A+

∫ t

a

u(s)ϕ(s)ds, ∀ t ∈ [a, b],
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est de classe C1 sur [a, b] et vérifie

dF (t)

dt
= u(t)ϕ(t) ≤ u(t)F (t), ∀ t ∈ [a, b],

d’où l’on déduit
d

dt

(
F (t)e−

∫ t
a u(s)ds

)
≤ 0, ∀ t ∈ [a, b].

et, après intégration, il vient

F (t)e−
∫ t
a u(s)ds ≤ F (a) = A, ∀ t ∈ [a, b],

Par conséquent

ϕ(t) ≤ F (t) ≤ Ae
∫ t
a u(s)ds, ∀ t ∈ [a, b].

�

Nous pouvons maintenant donner une preuve du théorème 2.3.

Preuve du théorème 2.3

1. On suppose que T ∗ < b et que x est bornée au voisinage de T ∗.

Il s’ensuit grâce à la continuité de f que l’application t 7→ f (t, x(t)) est bornée

au voisinage de T ∗. Il existe δ > 0, M > 0 tels que

‖f(t, x(t))‖ ≤M,∀ t ∈ [T ∗ − δ, T ∗].

Par conséquent, pour t1, t2 ∈ [T ∗ − δ, T ∗], on a

‖x(t1)− x(t2)‖ =

∫ t2

t1

f(τ, x(τ))dτ ≤M |t1 − t2|.

Ainsi, x(t) est de Cauchy quand t → T ∗, donc il existe xf ∈ Rn tel que

x(t)→ xf quand t→ T ∗. D’où

dx(t)

dt
= f (x(t))→ f(xf ) quand t→ T ∗.

Soit x̃ : (T∗, T
∗] → Rn prolongeant x, par x̃(T ∗) = xf . Le raisonnement

précédent montre que x̃ ∈ C1
(

(T∗, T
∗], Rn

)
et x̃ est une solution du même

problème de Cauchy que x sur l’intervalle (T∗, T
∗], strictement plus grand que

(T∗, T
∗). Ceci contredit la maximalité de x.
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2.2. Notions d’équilibre et de stabilité [2, 13]

2. Soit x une solution maximale de dx/dt = f(x(t)). Supposons x définie sur

(T∗, T
∗) avec T ∗ < +∞.

Il vient, d’après le 1., que x n’est pas bornée au voisinage de T ∗.

Soit t0 ∈ (T∗, T
∗). Pour tout t ∈ (t0, T

∗), on a

‖x(t)‖ = ‖x(t0) +

∫ t

t0

f(τ, x(τ))dτ‖

≤ ‖x(t0)‖+

∫ t

t0

(
M0(τ) +M1(τ)

)
‖x(τ)‖dτ

≤ ‖x(t0)‖+ ‖M0‖L1(t0, T ∗) +

∫ t

t0

M1(τ)‖x(τ)‖dτ.

Le Lemme de Gronwall fournit alors la majoration suivante

‖x(t)‖ ≤
(
‖x0‖+ ‖M0‖L1(t0, T ∗)

)
e‖M1‖L1(t0, T ∗) ,∀ t ∈ [0, T ∗),

ce qui est impossible, puisque x n’est pas bornée au voisinage de T ∗.

�

2.2 Notions d’équilibre et de stabilité [2, 13]

L’évolution des systèmes dynamiques révélent l’existence de points ”privilégiés”

où différents états ont tendance à y rester. Ces points sont appelés points d’équilibre.

La stabilité d’un point d’équilibre d’un système, qu’il soit dynamique ou non, consiste

toujours à observer que son évolution reste proche du point d’équilibre lorsqu’on s’en

écarte, dans un certain voisinage, appelé domaine de stabilité. L’attracteur, quant

à elle, revient à traduire que, s’écartant légèrement de cette position d’équilibre, le

système reviendra sur celle - ci au bout d’un certain temps. La stabilité asymptotique

combine à la fois la stabilité et l’attractivité, et indique donc que le système revien-

dra au bout d’un temps qui peut être infini, au point d’équilibre, tout en restant

proche de celui-ci au cours du temps. Notons que la notion de stabilité asymptotique

est la plus exigée en pratique. Ceci s’explique certainement par le fait qu’elle consti-

tue une première approche pouvant s’adapter à plusieurs situations (précision en
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2.2. Notions d’équilibre et de stabilité [2, 13]

régulation, poursuite d’une trajectoire de référence, . . .). La stabilité exponentielle

vient ajouter au caractère asymptotique un critère de rapidité de convergence.

Avant de détailler les diverses définitions de la stabilité, il convient en premier

lieu de définir la notion d’équilibre pour un système dynamique.

Définition 2.2

Un point xe ∈ Rn est dit point d’équilibre (ou point stationnaire) du système différentiel

dx

dt
= f(t, x) (2.6)

s’il existe un temps fini T tel que f(t, xe) = 0 pour tout t ≥ T .

Définition 2.3

Un point d’équilibre xe de (2.6) est dit stable si pour chaque δ > 0 et quelque soit

t0 ∈ R+ il existe ω(δ, t0) > 0 tels que | x(t, t0, γ)− xe |< δ pour chaque t ≥ t0 toutes

les fois que | γ − xe |< ω(δ, t0) où x(t, t0, γ) est une solution de (2.6) avec l’état

initial x(t0) = γ.

Définition 2.4

Un point d’équilibre xe de (2.6) est dit asymptotiquement stable si :

1. il est stable et

2. pour chaque t0 ≥ 0 il existe ε(t0) > 0 tel que lim
t→∞

x(t; t0, γ) = xe toutes les fois

que | γ − xe |< ε(t0).

Noter qu’un point d’équilibre x = xe de (2.6) est dit instable s’il n’est pas stable.

D’autre part, à la différence des systèmes linéaires, les systèmes non linéaires peuvent

posséder plusieurs points d’équilibre ayant des propriétés très différentes. Pour illus-

trer ce fait, considérons un système physique régi par l’équation différentielle sui-

vante :
dx

dt
= −x+ x2, t ≥ 0. (2.7)
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2.2. Notions d’équilibre et de stabilité [2, 13]

Cette équation admet deux points d’équilibres 0 et 1. La solution générale de celle -

ci est x(t) =
1

1− ket
, k ∈ R. Son graphe (figure 2.1) montre bien que 0 est asymp-

totiquement stable et que 1 est instable. En pratique, il est souvent difficile d’établir

directement cette propriété à partir d’une solution explicite du problème. L’étude

de la stabilité d’un point d’équilibre peut alors se faire par une étude locale.

Concernant l’étude de stabilité des systèmes différentiels deux approches sont cou-

rantes :

– Dans la première approche, le système (2.6) est d’abord linéarisé autour d’un

point d’équilibre xe. On se ramène alors à un système différentiel de la forme

dX

dt
= A(t)(X − xe) (2.8)

et, dans le cas des systèmes autonomes, c’est - à - dire si A(t) ≡ A ( matrice

ne dépendant pas de t), une condition nécessaire de stabilité est que toutes les

valeurs propres de A aient une partie réelle négative. (Voir, par exemple, [62]

pour un énoncé précis du théorème).

– Une deuxième approche est liée à la théorie de stabilité de Lyapunov [59]. Cette

théorie est particulièrement adaptée aux systèmes différentiels non autonomes.

Les résultats de stabilité sont basés sur l’existence d’une fonction de Lyapunov

satisfaisant certaines propriétés. Donnons en une définition ci - après.

Définition 2.5

Une fonction V : D ⊆ Rn → R+ est appelée fonction de Lyapunov si elle satisfait

les deux conditions suivantes :

– V (x) est continue et ses dérivées partielles
∂V (x)

∂xi
, ∀ i = 1, . . . , n, existent et

sont continues.

– V (x) est définie positive, c’est - à - dire V (x) > 0, ∀ x 6= 0 et V (0) = 0.

Théorème 2.4

Dans le voisinage D ⊆ Rn, l’état d’équilibre x = 0 du système (2.6) est :
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2.2. Notions d’équilibre et de stabilité [2, 13]
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Figure 2.1 – Stabilité et instabilité des points 0 et 1 de l’équation (2.7).
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2.3. Cycles limites

– localement stable, s’il existe une fonction de Lyapunov V : D → R+ telle que

V̇ (x) ≤ 0, ∀ x ∈ D.

– Localement asymptotiquement stable, s’il existe une fonction de Lyapunov, V :

D → R+ telle que V̇ (x) < 0, ∀ x ∈ D.

�

Théorème 2.5

L’état d’équilibre x = 0 du système (2.6) est globalement asymptotiquement stable

s’il existe une fonction de Lyapunov V : Rn → R+ telle que

– V̇ (x) < 0, ∀ x ∈ Rn\{0},

– lim
‖x‖→∞

V (x) =∞.

�

La seconde propriété signifie que la fonction de Lyapunov est radialement non

bornée. De cette hypothèse il est prouvé que les surfaces de Lyapunov V (x) = c

sont fermées et assurant ainsi la convergence vers l’origine.

2.3 Cycles limites

Nous donnons ici quelques définitions sans trop entrer dans les détails.

Définition 2.6 (Cycle périodique)

Une trajectoire x du système (2.3) est appelée cycle périodique si elle n’est pas réduite

à un point et si il existe une constante Tp > 0 telle que

x(t+ Tp) = x(t), −∞ < t < +∞

la constante Tp est la période du cycle. Nous dirons donc que x a une période Tp.

Définition 2.7 (Cycle presque - périodique)
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2.4. Bifurcation

1. Considérons une trajectoire unidimensionelle x continue et un nombre positif

ε ; τ(ε) est un nombre de translation de x si :

‖x(t+ τ(ε))− x(t)‖ ≤ ε ∀ t ∈ R

2. la trajectoire x(t) est appelée presque - périodique si pour tout ε > 0, un

ensemble relativement dense de nombres de translation τ(ε) existe.

Un cycle limite est une solution temporellement périodique qui est indépendante des

conditions initiales et qui possède une fréquence intrinsèque au système indépendant

des conditions initiales. On peut donner la définition suivante.

Définition 2.8 (Cycle limite)

Posons Ω(x) =
{
x ∈ Rn/ lim

t→∞
x(t) = xe

}
.

Un cycle périodique ou presque périodique γ de (2.3) est appelé cycle limite s’il existe

au moins une autre trajectoire x telle que x 6= γ et Ω(x) = γ.

Un exemple typique de cycle limite est donné par l’équation de Van der Pol
d2x

dt2
= α(1− x2)

dx

dt
− x dont les solutions représentées sur la figure 2.2.

2.4 Bifurcation

Dans la modélisation des systèmes (Biologiques, physiques . . .) les incertitudes

liées aux phénomènes (estimation des paramètres etc. . . ) sont toujours présentes.

Pour tester la robustesse d’un modèle face aux perturbations ainsi engendrées, on a

donc recours à certains outils mathématiques spécifiques. Il est important de souli-

gner que des perturbations de même amplitude peuvent être de plusieurs natures et

leurs impacts sur un système donné peuvent être très différents. Comme les incerti-

tudes les plus importantes portent sur les paramètres, nous allons nous restreindre

aux modèles paramètrés pouvant se formuler comme suit :

dx

dt
= f(x, t; α), (2.9)
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2.4. Bifurcation
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Figure 2.2 – Un exemple de cycles limites de l’équation de Van der Pol
d2x

dt2
=

α(1− x2)
dx

dt
− x . En (a) et (b) sont représentés un cycle limite stable pour α = 1.

Un autre cas stable, α = 0.375, est représenté en (c) et (d). Les figures (e) et (f)

représentent un cycle limite instable pour α = −0.25.
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2.4. Bifurcation

où, α ∈ D ⊂ Rp désigne un vecteur paramètre. Pour ces types de modèles, l’ana-

lyse consiste très souvent à identifier des valeurs des paramètres pour lesquelles le

comportement asymptotique du système change qualitativement. Les valeurs cor-

respondant aux changements qualitatifs des propriétés sont appelés valeurs de bi-

furcation. Elles permettent donc de savoir si le système est consistant malgré les

perturbations dues à l’incertitude sur l’estimation des paramètres (s’il n’y a pas de

valeur de bifurcation dans la zone d’incertitude des paramètres) ou non (s’il existe

au moins une valeur de bifurcation dans la zone d’incertitude de paramètres). Elles

peuvent aussi apporter beaucoup d’autres renseignements sur le système. Nous nous

intéresserons dans ce travail qu’aux bifurcations locales, c’est - à - dire relatives à

un point d’équilibre.

2.4.1 Une approche

Une bifurcation pour un système de type (2.9) peut être perçue comme un chan-

gement qualitatif des propriétés des solutions lorsqu’on modifie le paramètre α. De

manière plus précise, un point de bifurcation est un paramètre où il y a un chan-

gement fondamental des propriétés lorsqu’on s’en écarte. Pour mieux appréhender

cette notion, considérons l’exemple suivant.

Exemple 2.1

Soit l’équation différentielle suivante

dx

dt
= f(x, α) = αx+ x3 (2.10)

Il s’ensuit que :

– si α = 0 alors il y’a un seul point d’équilibre x = 0 ;

– si α > 0 alors il y’a un seul point d’équilibre x = 0 ;

– si α < 0, il y’a trois points d’équilibres x = 0 et x = ±
√
−α.

Par ailleurs, au point d’équilibre x = 0 on a
df

dx

∣∣∣
x = 0

= α. Il vient alors que

l’équilibre x = 0 est stable si α < 0 et instable si α > 0 (voir figure 2.3).
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2.4. Bifurcation
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Figure 2.3 – Diagramme de bifurcation relatif à l’équation différentielle (2.10).
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2.4. Bifurcation

Il existe plusieurs types de bifurcations. On donne ci - après quelques exemples

d’entres elles.

2.4.2 Bifurcations selle - noeud

Une bifurcation ”selle noeud” est caractérisée par le fait que sur un côté de celle -

ci deux équilibres existent, tandis que sur l’autre côté ces équilibres disparaissent. Le

point de bifurcation peut être considéré comme le point où les deux équilibres sont

en collision. Une bifurcation selle-noeud peut avoir lieu dans n’importe quel système

et est, en fait, une bifurcation très typique qui se produit quand un paramètre

est modifié. Une bifurcation selle-noeud est aussi appelée bifurcation pli, bifurca-

tion tangente, bifurcation du point limite, ou bifurcation tournante. Une condition

nécessaire d’existence de ces bifurcations est donnée par le théorème suivant.

Théorème 2.6 (Bifurcation selle - noeud)

Soit
dx

dt
= f(x; α), (2.11)

avec x ∈ R et α ∈ R. Si en un point (x0, α
∗) les conditions suivantes sont satisfaites :

(i) f(x0, α
∗) = 0 ;

(ii)
∂f(x0, α

∗)

∂x
= 0 ;

(iii)
∂2f(x0, α

∗)

∂x2
6= 0

(iv)
∂f(x0, α

∗)

∂α
6= 0

alors α∗ est une bifurcation selle - noeud.

Exemple 2.2

L’équation générique pour une bifurcation selle - noeud est donnée par

dx

dt
= f(x, α) = α− x2 (2.12)
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2.4. Bifurcation

– Si α < 0 l’équation α − x2 = 0 n’admet pas de solution alors on n’a pas de

point fixe.

– Si α > 0, α− x2 = 0 admet deux racines ±
√
α

–
∂f(x; α)

∂x

∣∣∣∣∣
x =
√
α

= −2
√
α < 0 et

∂f(x; α)

∂x

∣∣∣∣∣
x = −

√
α

= 2
√
α > 0.

Par suite le point fixe x =
√
α est stable, mais x = −

√
α est instable.

– Si α = 0 le seul point fixe est x = 0, par intégration de (2.12) on obtient

x(t) =
1

t+ 1
x0

d’où le point x = 0 est semi-stable.

(Stable si x0 > 0 et instable si x0 < 0) (voir figure 2.4).

2.4.3 Bifurcation transcritique

La bifurcation transcritique ne se produit que lorsque le système a un équilibre

qui existe pour toutes les valeurs du paramètre et ne peut jamais être détruite.

Lorsque cet équilibre entre en collision avec un autre équilibre, les propriétés de

stabilité changent, mais continuera d’exister à la fois avant et après la bifurcation.

Par conséquent, les deux équilibres passent à travers les uns les autres. Le théorème

fondamental pour ces bifurcations est :

Théorème 2.7 (Bifurcation transcritique)

Si en un point (x0, α
∗) les conditions suivantes sont satisfaites :

(i) f(x0, α
∗) = 0

(ii)
∂f(x0, α

∗)

∂x
= 0

(iii)
∂2f(x0, α

∗)

∂x2
6= 0

(iv)
∂f(x0, α

∗)

∂α
6= 0

alors α∗ est une bifurcation transcritique.

Exemple 2.3

Un exemple générique de bifurcation transcritique est

dx

dt
= αx− x2 (2.13)
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Figure 2.4 – Illustration d’un diagramme de bifurcation Selle-noeud et de l’espace

de phase.

25



2.4. Bifurcation

L’équation admet deux points fixes x = 0 et x = α

et
∂f(x; α)

∂x

∣∣∣∣∣
x = 0

= α et
∂f(x; α)

∂x

∣∣∣∣∣
x = α

= −α.

Par suite :

– Si α < 0, le point fixe x = 0 est stable, mais x = α est instable.

– Si α > 0, le point fixe x = 0 est instable, mais x = α est stable.

– Si α = 0, le point fixe est x = 0. Par intégration de (2.13) on obtient :

x(t) =
1

t+ 1
x0

d’où le point x = 0 est semi - stable.

(stable si x0 > 0 et instable si x0 < 0) (voir figure 2.5).

2.4.4 Bifurcation fourche (pitchfort)

La bifurcation fourche n’existe que quand il y a une symétrie de réflexion présente

dans le système. Une équation générique s’écrit

dx

dt
= αx± x3. (2.14)

Ce système admet une symétrie de réflexion en x = 0. Pour un changement de x en

x̃ = −x, l’équation (2.14) reste inchangée. On a le théorème suivant

Théorème 2.8 (Bifurcation fourche)

Soit
dx

dt
= f(x; α), avec f(−x; α) = −f(x; α) (2.15)

avec x ∈ R et α ∈ R. Si en un point (x0, α
∗) les conditions suivantes sont satisfaites :

– f(x0, α
∗) = 0 pour tout α∗ ∈ R,

–
∂f

∂x
(x0, α

∗) = 0

–
∂3f(x0, α

∗)

∂x3
6= 0

–
∂f(x0, α

∗)

∂α
6= 0

alors α∗ est un point de bifurcation de fourche
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2.4. Bifurcation
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2.4. Bifurcation

Dans l’équation (2.14), lorsque le terme cubique est −x3, la bifurcation fourche est

dite supercritique, tandis que si le terme cubique est +x3, la bifurcation est dite

sous-critique.

Exemple 2.4 Bifurcation fourche (Pitchfork)

Soit l’équation
dx

dt
= αx− x3 (2.16)

Posons f(x, α) = αx− x3. Alors si α < 0 on a un seul point fixe x = 0.

Si α > 0 on a trois points fixes, x = 0, x =
√
α et x = −

√
α. et

∂f(x; α)

∂x

∣∣∣∣∣
x=0

= α

et
∂f(x; α)

∂x

∣∣∣∣∣
x= ±

√
α

= −2α par suite :

– Si α < 0, le seul point fixe x = 0 est stable.

– Si α > 0, le point fixe x = 0 est instable, mais x =
√
α et x = −

√
α sont

stables. On remarque un échange dans le nombre des points fixes et dans la

stabilité en α = 0 (voir figure 2.6).

2.4.5 Bifurcation de Hopf

Une bifurcation importante est la bifurcation de Hopf. Pour la définir, considérons

le système différentiel autonome à un paramètre suivant :

dx

dt
= f(x; α), x ∈ Rn, α ∈ R, (2.17)

où f est une fonction suffisamment régulière. On a :

Définition 2.9 (Bifurcation de Hopf )

On dit que le réel α∗ est un point de bifurcation de Hopf pour le système (2.17) si

i) en α = α∗, (2.17) admet un point d’équilibre x0 et en ce point la matrice Jaco-

bienne
∂f

∂x
(x0, α

∗) admet une paire de valeur propre simple imaginaire ±iω0,

ω0 > 0.

ii) Et (2.17) admet un cycle limite unique correspondant à une solution périodique.
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phase.

29



2.5. Notions de chaos

Théorème 2.9 (Poincaré - Andronov - Hopf) [46]

Supposons que le système autonome non-linéaire (2.17) admet un point d’équilibre

x = x0 et que la matrice jacobienne A =
∂f(x0, α)

∂x
admet une paire de valeurs

propres conjuguées λ(α) et λ̄(α). S’il existe α∗ tel que

(i) Re(λ(α∗)) = 0

(ii)
∂Re(λ)

∂α

∣∣∣
α = α∗

6= 0

alors α∗ est un point de bifurcation de Hopf.

Quand une paire de valeurs propres complexes conjuguées se déplace à travers l’axe

imaginaire, généralement une bifurcation de Hopf se produit. Cette bifurcation est

liée à la bifurcation fourche, comme nous le verrons plus tard. La bifurcation de

Hopf aura lieu lorsque le paramètre de contrôle λ prend une valeur critique λ0 pour

laquelle la matrice jacobienne du système possède une paire de valeurs propres com-

plexes conjuguées qui traversent l’axe imaginaire et le type de stabilité de l’équilibre

existant change avec l’apparition d’un cycle limite. Cette bifurcation est illustrée sur

les figures 2.7 et 2.8.

2.5 Notions de chaos

2.5.1 Une tentative d’approche de la notion

Dans les années 1990, de nombreux livres ont été dédiés à la théorie du chaos

(voir, par exemples [3, 15, 21]). En fait une tentative de définition du chaos est : on

dit qu’un système est chaotique lorsque son évolution dans le temps est très sensible

aux conditions initiales et qu’il est impossible de prédire exactement dans quel état

il va se trouver si l’on attend trop longtemps.

L’atmosphère terrestre en est un exemple quotidien. Les météorologues ont en

effet beaucoup de mal pour faire des prévisions convenables au delà d’une semaine
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2.5. Notions de chaos
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Figure 2.7 – Une illustration de bifurcation de Hopf pour le système différentiel
dx

dt
= −y+x(α−x2− y2),

dy

dt
= x+ y(α−x2− y2). L’origine est un point fixe pour

toutes les valeurs de α. En α = 0, on a une bifurcation de Hopf : l’origine devient

instable et il apparait une solution périodique stable, comme on peut le voir sur le

diagramme de bifurcation où l’on trace le rayon r du cercle en fonction de α. En

α > 0 la trajectoire de phase se dirige vers le point fixe à l’origine.
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Figure 2.8 – Une illustration de la bifurcation de Hopf pour le système
dx

dt
=

βx − αy,
dy

dt
= αx + βy. Lorsque α = 3 et β = −1, (a) et (b) la trajectoire est

stable au niveau de l’origine et (c) la trajectoire de phase se dirige vers le point fixe

à l’origine. Lorsque α = 3 et β = 0, (d) et (e), la trajectoire est oscillatoire donc on

a une bifurcation de Hopf. (f) la trajectoire de phase est une ellipse. Lorsque α = 3

et β = 1, (g) et (h) la trajectoire est instable et (i) la trajectoire de phase, tous les

points fuient l’origine.
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2.5. Notions de chaos

en dépit du fait que les équations qui gouvernent l’atmosphère soient parfaitement

connues.

Pour les systèmes réguliers (non chaotiques) une petite erreur a très peu d’in-

fluence sur sa dynamique alors qu’au contraire pour les systèmes chaotiques, par

définition, une petite cause peut avoir de grands effets. C’est donc au début des

années 70 que le rapprochement entre les travaux de physiciens et de mathématiciens

a permis la découverte de la réalité mathématique du chaos dans les systèmes phy-

siques déterministes. La notion même de solution chaotique est difficile à formuler.

Nous avons donc fait le choix de l’aborder sur la base des caractéristiques compor-

tementales des solutions.

Un système dynamique peut présenter des solutions chaotiques instables. Celles-

ci ne pouvant être ni observées ni même simulées, nous ne traiterons que des solu-

tions chaotiques stables. Une solution chaotique a un comportement asymptotique

borné. Elle n’est ni un point d’équilibre, ni une solution périodique ou même quasi

périodique. Le chaos peut donc être défini par défaut pour d’autres types de solutions

sachant qu’il n’existe pas de définition à la fois formelle et générale. Pratiquement,

une dynamique chaotique peut être identifiée, en première analyse, par la recon-

naissance des propriétés caractéristiques d’attracteurs étranges, et de sensibilité aux

conditions initiales.

La plupart des systèmes chaotiques exhibent la sensibilité aux conditions ini-

tiales. Pour deux conditions initiales arbitraires très voisines les trajectoires corres-

pondantes divergent exponentiellement.

Nous donnons ci - après quelques exemples d’équations chaotiques.

2.5.2 Exemples de modèles chaotiques

Nous présentons ici deux exemples typiques des systèmes chaotiques gouvernés

par des équations différentielles.
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2.5. Notions de chaos

Nous illustrons les solutions de ces systèmes sur les figures 2.9 et 2.10

Exemple 2.5 (Système de Lorenz)

Le système de Lorenz est un système différentiel définit par

dx

dt
= σ(y − x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz

où σ, r, b sont des réels positifs. Ce modèle est celui d’un écoulement fluide dont

les états x, y, z représentent respectivement la vitesse de ce fluide, la différence de

temperature verticalement et la différence de temperature horizontalement.

Les valeurs de σ et b sont fixées respectivement à 10 et 8/3. Le paramètre de contrôle

est r. La solution triviale x = y = z = 0 du système correspond physiquement à

un régime où le fluide est au repos et où la chaleur se transmet uniquement par

diffusion moléculaire (état conductif). Pour r grand, cet équilibre est instable et il

laisse la place à des régimes où le transfert de chaleur est réalisé par diffusion et par

convection. Lorsque r > rc, le système transite vers un régime chaotique. Toutes les

trajectoires convergent vers une trajectoire chaotique : l’attracteur étrange. Cette

sensibilité aux conditions initiales, ainsi que le chaos déterministe observé avec ce

système dynamique simple ont servi de base à ce que l’on a appelé ” l’effet papillon

”. Un système chaotique est imprévisible, mais il est parfaitement décrit par des

équations simples et déterministes.

La théorie du chaos décrit qualitativement les comportements à long terme des

systèmes dynamiques. Dans ce cadre, on ne met pas l’accent sur la recherche de

solutions précises aux équations du système dynamique, mais plutôt sur la réponse

à des questions telle que : ”le système convergera - t - il vers un état stationnaire à

long terme ? Et, dans ce cas, quels sont les états stationnaires possibles ? ” ou ” Le

comportement à long terme du système dépend - il des conditions initiales ?”.

34



2.5. Notions de chaos

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

Po
rtr

ai
t d

e 
ph

as
e

(a), r=5

0 1 2 3 4 5 6 7 8 9
0

5

10

15

Po
rtr

ai
t d

e 
ph

as
e

(b), r=10

-15 -10 -5 0 5 10 15
0

5

10

15

20

25

P
or

tra
it 

de
 p

ha
se

(c),  r=15

-15 -10 -5 0 5 10 15 20
0

5

10

15

20

25

30

35

Po
rtr

ai
t d

e 
ph

as
e

(d),  r=20

-15 -10 -5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

Po
rtr

ai
t d

e 
ph

as
e

(e), r=24

-20 -15 -10 -5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Po
rtr

ai
t d

e 
ph

as
e

(f), r=28

Figure 2.9 – Trajectoires dans l’espace des phases représentant le système de Lorenz

en 2D pour différentes valeurs de r.
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2.5. Notions de chaos

Exemple 2.6 (Système de Rössler)

Le système de Rössler est donné par les équations suivantes :

dx

dt
= −y − z

dy

dt
= x+ ay

dz

dt
= b+ z(x− c)

Ces équations représentent physiquement un modèle où les états x, y et z représentent

les concentrations des substances d’une réaction chimique. Les paramètres a, b et c

intervenants dans le modèle sont supposés positifs.
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Figure 2.10 – Représentation du systèmes de Rössler pour différentes valeurs a, b, c.
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2.5. Notions de chaos

Conclusion

Dans ce chapitre nous avons présenté quelques éléments de la théorie des systèmes

dynamiques linéaires ou non linéaires. Différents types de bifurcations ont été évoqués.

Parmi ces bifurcations, celle qui retiendra notre attention pour la suite de ce mémoire

est la bifurcation de Hopf. Cette bifurcation est particulièrement intéressante car elle

met en évidence des régions de stabilité et les solutions bifurquées sont oscillatoires.

Par ailleurs, certains points de la théorie du chaos ont été brièvement évoqués.

Notamment, il en découle des exemples présentés à cet effet que des systèmes

différentiels en apparence simples peuvent produire des solutions chaotiques dont

l’évolution à long terme est tout à fait imprévisible.
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Chapitre 3

Quelques éléments de la théorie

des systèmes dynamiques multi -

retards

Nous donnons ici quelques notions importantes pour une étude qualitative des

systèmes dynamiques multi - retards. Une attention particulièrement sera accordée

aux systèmes gouvernées par des équations différentielles non linéaires. De façon

précise, les aspects d’existence, d’unicité et de stabilité de solutions seront revisités

dans un cadre spécifique des systèmes multi - retards.

3.1 Définition

Comme énoncé au chapitre précédent, nous ne considérons que des systèmes

différentiels continus. Soit τ > 0 et xt ∈ C
(
]− τ, 0[, Rn

)
tel que xt(θ) = x(t+ θ).

Définition 3.1

Soient U un ouvert de R×C
(
]−τ, 0[, Rn

)
et f : U → Rd une fonction continue. On

appelle équation différentielle fonctionnelle à retard (EDFR) sur U une relation de
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3.2. Résultats d’existence et d’unicité

la forme
dx(t)

dt
= f(t, xt). (3.1)

Dans le cas multi - retards, cette définition peut - être généralisée en posant

τ = (τ1, . . . , τp) avec τi > 0 ∀ i et

θ ∈]− τ1, 0[× . . .×]− τp, 0[7→ xt(θ) ∈ Rn×p. (3.2)

Toutefois, dans le cadre de cette thèse, un système différentiel à retard sera formulé

explicitement comme suit :

dx(t)

dt
= f

(
t, x, xt(θ1), . . . , xt(θp)

)
(3.3)

avec xt(θi) = x(t+ θi) et θi ∈]− τi, 0[.

3.2 Résultats d’existence et d’unicité

Les équations différentielles à retards ont des caractéristiques qui rendent leurs

analyses plus compliquées que celles des équations sans retard. Elles nécessitent plus

d’informations qu’un problème analogue sans retard. Par exemple, pour l’équation

différentielle
dx

dt
= f

(
x(t), x(t− τ)

)
, (3.4)

déterminer ẋ(t0), nécessite la connaissance de x(t0) et x(t0 − τ). Ainsi, il apparait

clairement que la détermination d’une solution de (3.4) exige une information initiale

sur tout l’intervalle [t0 − τ, t0]. Il s’ensuit qu’un système différentiel à retard peut

généralement être formulé comme suit.
dx

dt
= f

(
t, xt

)
, t ≥ t0

xt0 = ϕ0 ∈ C
(
]− τ, 0[, Rn

) (3.5)
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3.3. Cas plus général des systèmes entrées - états à retards

Théorème 3.1 [32]

Supposons que la fonction f soit continue, alors pour tout ϕ0 ∈ C, le système (3.5)

admet au moins une solution. De plus, si la fonction f est localement lipschitzienne

par rapport à xt alors la solution est unique.

�

Ensuite, nous ne nous intéressons pas uniquement aux équations autonomes à donnée

initiale dans C, 
dx(t)

dt
= f(xt), t ≥ t0

xt0 = ϕ0 ∈ C(]− τ, 0[, Rn).

(3.6)

On a :

Théorème 3.2 [38]

Si f est une fonction localement lipschitzienne et vérifie pour tout ϕ0 ∈ C

|f(ϕ)| ≤ c1‖ϕ‖+ c2, c1, c2 ≥ 0

alors, le problème de Cauchy (3.6) associé admet une solution unique, définie sur

l’intervalle [−τ, +∞).

�

3.3 Cas plus général des systèmes entrées - états

à retards

Comme il a été dit précédemment, très peu d’études ont été menées sur la

stabilité entrée - état des systèmes à retard. Teel a été l’un des premiers à avoir

formalisé ce problème dans [66] en établissant un lien entre le théorème de Razu-

mikhin et l’approche proposée par Sontag. Par la suite, dans [58], les auteurs ont

appliqué ces résultats dans le cas d’un système téléopéré avec des retards de trans-

mission. L’application illustrée dans [58], montre parfaitement l’enjeu que représente
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3.3. Cas plus général des systèmes entrées - états à retards

la généralisation de cette théorie à la classe des équations différentielles fonction-

nelles. Dans cet article, les auteurs appliquent les résultats développés par Teel dans

le cas des réseaux de télé opération en médecine modélisés par des systèmes non

linéaires soumis à des perturbations.

Un système entrée - état à retards, schématisé sur la figure 3.1, est régit par un

système de la forme 
dx

dt
= f(x, xt, ut)

y(t) = g(x, xt, ut).

(3.7)

Les résultats d’existence et d’unicité sont tout à fait analogues à ceux énoncés plus

haut dans le cas des systèmes à retards sans entrée.

 

 

 

 

 

 

 

 

 

 

 

x(t)

y(t)

SortieEntrée 

u(t) 
 

Etat 

Figure 3.1 – Schéma fonctionnel d’un système multivariable entrée - état.

Afin de revisiter quelques propriétés de stabilité, nous considérons le système différentiel

suivant 
dx

dt
= f(t, xt, ut), t ≥ t0,

xt0 = ϕ ∈ C
(
]− τ, 0[, Rn

)
.

(3.8)

Pour assurer l’existence des solutions, la fonction f est supposée être continue sur

R+ × C × C.
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3.4. Critères de stabilité

Proposition 3.1 [33]

Soient t0 ∈ R et ϕ ∈ C0 donnés. On suppose que f est continue. Une fonction x est

solution du problème (3.8) si et seulement si elle est solution de l’équation intégrale

x(t) = ϕ0(0) +

∫ t

t0

f(s, xs, us)ds, t ≤ t0; xt0 = ϕ0. (3.9)

�

3.4 Critères de stabilité

Dans l’étude des équations différentielles ordinaires et les équations différentielles

à retards, on s’intéresse au problème de la stabilité des solutions stationnaires (points

d’équilibre).

3.4.1 Stabilité des systèmes autonomes à retards sans entrée

Considérons l’équation à retard autonome suivante :
dx(t)

dt
= f(xt), t > t0

xt0 = ϕ0

(3.10)

où f : C → Rn est une fonctionnelle continue. Nous savons qu’un point d’équilibre

de (3.10) est une solution x0 de l’équation f(x) = 0. Dans cette section, quitte à

faire un changement d’inconnue, nous supposons que x0 = 0.

Définition 3.2 [33]

L’origine du système (3.10) est dite stable en temps fini si :

(i) elle est stable, et

(ii) il existe δ > 0 tel que, si ϕ0 ∈ Cδ, alors il existe 0 ≤ T (ϕ0) < ∞ tel que

xt(ϕ0) = 0 pour tout t ≥ T (ϕ0).

T0(ϕ0) = inf{T (ϕ0) ≥ 0 : xt(ϕ0) = 0,∀ t ≥ T (ϕ0)}
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3.4. Critères de stabilité

est une fonctionnelle appelée temps d’établissement du système (3.10).

Définition 3.3 [33]

L’origine du système (3.10) est dite :

– asymptotiquement stable si elle est stable et s’il existe δ0(t0) > 0 tel que :

‖ϕ0‖C < δ0(t0)⇒ lim
t→∞

x(t; t0, ϕ0) = 0,

– uniformément asymptotiquement stable si elle est uniformément stable et s’il

existe δ0 tel que pour η > 0, il existe un T (η) de telle sorte que :

‖ϕ0‖C < ϕ0 ⇒ ‖x(t; t0, ϕ0)‖ < η, ∀ t ≥ t0 + T (η),

– globalement uniformément asymptotiquement stable si la condition précédente

est vraie quelle que soit ϕ0 ∈ C.

Remarque 3.1

Si x(t) est une solution quelconque de l’équation (3.10) alors x est stable (resp.

asymptotiquement stable), si la solution z = 0 de l’équation

ż(t) = f(zt + xt)− f(xt)

est stable (resp. asymptotiquement stable). �

Dans le cadre des équations différentielles linéaires à retard, la stabilité et stabi-

lité asymptotique peuvent être déterminées grâce à la localisation des racines de

l’équation caractéristique.

En fait, 0 est asymptotiquement stable si et seulement si toutes les racines de la ma-

trice
∂f

∂x

∣∣∣
x = 0

sont à parties réelles négatives. S’il existe une racine de l’équation

caractéristique à partie réelle strictement positive, alors la solution x = 0 est in-

stable.

Remarque 3.2

Si x0 est un point d’équilibre non nul de f et si f est continûment différentiable dans
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3.4. Critères de stabilité

un voisinage de x0, alors la stabilité du point d’équilibre x0 est déterminée par la

localisation des racines de l’équation caractéristique associée à l’équation linéarisée

de (3.10) autour de x0. �

3.4.2 Stabilité entrée - état des systèmes à retards

Pour un système entrée - état, la stabilité est en première approche une stabilité

asymptotique globale du point d’équilibre pour une entrée nulle, et en seconde ap-

proche un état borné pour une entrée bornée [70, 71]. Dans [60], Sontag donne une

définition de la stabilité entrée - état, ainsi que le lien existant entre cette stabilité

et celle des systèmes retardés sans entrée. Commençons d’abord par introduire les

ensembles suivants :

– Une fonction continue α : [0, a) → [0, ∞), où a est un réel positif, est dite

de classe K si elle est strictement croissante et si α(0) = 0. Elle sera dite de

classe K∞ si a =∞ et α(r)→∞ quand r →∞.

– Une fonction continue β : [0, a) × [0, ∞) → [0, ∞) est dite de classe KL

si, pour r fixé, la fonction β(r, .) est décroissante par rapport à la deuxième

variable avec β → 0 quand s→∞.

Définition 3.4 [52, 61]

Le système (3.8) est dit stable entrée - état s’il existe une fonction β de classe KL et

une fonction γ de classe K∞ telles que, quelle que soit la fonction initiale ϕ0 et une

entrée bornée u, la solution xt(t0, ϕ0) existe pour tout t ≥ t0 et vérifie l’inégalité

‖x(t; t0, ϕ0)‖ ≤ β(‖ϕ0‖C, t− t0) + γ(‖ut‖∞). (3.11)

Notons que cette définition est principalement utile dans le cas des systèmes non

linéaires. Il est établi (voir [61]) que dans le cas linéaire, les notions de stabilité

entrée - état et stabilité asymptotique sont équivalentes.
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3.4. Critères de stabilité

Remarque 3.3

Comme dans le cas non retardé, cette définition peut aussi se traduire de façon

équivalente sous la forme suivante :

‖x(t; t0, ϕ0)‖ ≤ max[β(‖ϕ0‖C, t− t0), γ(‖ut‖∞)]. (3.12)

�

Remarque 3.4

Cette définition implique que si u(t) ≡ 0, alors l’origine du système (3.8) est glo-

balement asymptotiquement stable. L’inverse reste néanmoins faux et l’on peut s’en

convaincre en considérant l’équation différentielle scalaire ẋ(t) = −x(t)+u(t)x(t−1).

Le système est, bien entendu, exponentiellement stable pour une entrée u nulle mais

ne l’est plus si le système est soumis à une entrée suffisamment important : si u est

une constante supérieure à 1 les trajectoires du système divergent.

�

On a le résultat suivant.

Théorème 3.3 [34, 52]

Le point d’équilibre xe = 0 du système (3.8) est :

(i) uniformément stable si et seulement si, il existe une fonction α(.) de classe K

et une constante positive c, telle que l’on ait

‖ xt(t0, ϕ0) ‖C≤ α(‖ ϕ0 ‖C), ∀ t ≥ t0, ϕ0 ∈ C,

(ii) uniformément asymptotiquement stable si et seulement si, il existe une fonction

β(., .) de classe KL et une constante positive c telle que l’on ait

‖ xt(t0, ϕ0) ‖C< β(‖ ϕ0 ‖C, t), ∀ t ≥ t0, ϕ0 ∈ C,

(iii) globalement uniformément asymptotiquement stable si la condition précédente

est vraie quelle que soit ϕ0 ∈ C.
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3.4.3 Cas des systèmes linéaires multi - retards

Dans le cas linéaire, le système peut s’écrire sous la forme
Ẋ(t) = A0X(t) +

l∑
i=1

AiX(t− τi) +BU(t) t ≥ 0;

X(t) = ψ(t), −τmax ≤ t ≤ t0

(3.13)

avec ψ(t0) = X0. Les Ai sont des matrices carrées d’ordre n et B une matrice

d’ordre n×m, τi ∈ [0, τmax] est une constante représentant le ième retard, X(t) ∈ Rn

et U(t) ∈ Rm.

On remarque aisément que toute solution de classe C1(0, T,Rn) de (3.13) admet sur

[0, T ] la représentation intégrale suivante :

X(t) = eA0tX0 +

∫ t

t0

eA0(t−s)

(
l∑

i=1

AiX(s− τi) +BU(s)

)
ds. (3.14)

Il vient de cette expression que si la matrice A0 est de Hurwitz alors l’état Xe = 0 est

asymptotiquement stable. Dans toute la suite, on supposera que A0 est de Hurwitz.

Proposition 3.2

Le système linéaire retardé (3.13) est stable entrée - état si et seulement si l’origine

du système sans entrée est asymptotiquement stable.

3.4.3.1 Preuve

Sachant que la matrice A0 est de Hurwitz, il existe deux constantes positive c et

r telles que

‖ eA0t ‖≤ ce−rt ∀ t. (3.15)

Considérant la représentation (3.14) de la solution on a

‖ X(t) ‖≤ ce−rt ‖ ϕ0 ‖ +

∫ t−τ

−τ
ce−r(t−s)erτ

l∑
i=1

‖ Ai ‖‖ X(s− τi) ‖ ds+

∫ t

0

ce−r(t−s) ‖ B ‖‖ u(s) ‖ ds
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3.4. Critères de stabilité

Compte tenu de (3.15), on en déduit

‖ X(t) ‖≤ ce−rt ‖ ϕ0 ‖ +

∫ 0

−τ
ce−r(t−s)erτ

l∑
i=1

‖ Ai ‖‖ x(s− τi) ‖ ds+

∫ t

0

ce−r(t−s)erτ
l∑

i=1

‖ Ai ‖‖ x(s− τi) ‖ ds+

∫ t

0

ce−r(t−s) ‖ B ‖‖ u(s) ‖ ds

Par suite

‖ X(t) ‖≤ c


1 +

l∑
i=1

‖ Ai ‖ erτ

r

 ‖ ϕ0 ‖ e−rt+
∫ t

0

ce−r(t−s)erτ
l∑

i=1

‖ Ai ‖‖ x(s−τi) ‖ ds

+
c ‖ B ‖

r

∣∣u∣∣∞
En notant que

c ‖ B ‖
r

∣∣u∣∣∞ est une fonction non décroissante en t et en appliquant

l’inégalité de Gronwall [5] on obtient :

‖ X(t) ‖≤ c


1 +

l∑
i=1

‖ Ai ‖ erτ

r

 ‖ ϕ0 ‖ e−rt+
c ‖ B ‖

r

∣∣u∣∣∞e
∫ t

0

ce−r(t−s)erτ
l∑

i=1

‖ Ai ‖ ds

d’où

‖ X(t) ‖≤ c


1 +

l∑
i=1

‖ Ai ‖ erτ

r

 ‖ ϕ0 ‖ e−rt +
c ‖ B ‖

r
e

cerτ
l∑

i=1

‖ Ai ‖

r
∣∣∣u∣∣∣
∞

La solution vérifie bien l’équation (3.11) avec les fonctions

β(s, t) = c


1 +

l∑
i=1

‖ Ai ‖ erτ

r

 ‖ ϕ0 ‖ e−rt et γ(s) =
c ‖ B ‖

r
e

cerτ
l∑

i=1

‖ Ai ‖

r .

Ce qui achève la preuve. �

On pourra noter que ce résultat permet d’analyser de façon plus générale la stabilité

des systèmes d’équations différentielles à retards.
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3.5. Sur la bifurcation de Hopf pour les systèmes différentiels multi - retards

3.5 Sur la bifurcation de Hopf pour les systèmes

différentiels multi - retards

Considérons le système d’ équations différentielles à retards suivant :

dx(t)

dt
= f

(
x(t), xt(τ1), . . . , xt(τm)

)
, (3.16)

où x(t) ∈ Rn, f : Rn(m+1) → Rn est une fonction non linéaire, et les τj > 0,

j = 1, . . . ,m. Nous définissons une solution stationnaire x(t) ≡ xe ∈ Rn comme

solution du système non linéaire

f
(
xe, xe, xe, . . . , xe

)
= 0. (3.17)

La linéarisation du système (3.16) autour de cette solution permet de se ramener à

un système différentiel linéaire que nous pouvons formellement écrire sous la forme.

dx(t)

dt
= A0x(t) +

m∑
j=1

Ajx(t− τj), τj > 0 ∀ j (3.18)

où, en considérant f comme fonction des variables x0, x1, . . . , xm ; Aj ∈ Rn×n est la

dérivée partielle de f à xe évaluée par rapport à (m+ 1) arguments :

Aj(t) ≡
∂f

∂xj

(
xe, xe, . . . , xe

)
, j = 1, . . . ,m. (3.19)

Dans le cas d’une solution stationnaire, les matrices Aj(t) ≡ Aj sont constantes. En

substituant la solution x(t) = x0e
λt dans l’équation (3.18), la matrice

4(xe, λ) = λI − A0 −
m∑
j=1

Aje
−λτj

doit être non inversible pour assurer l’existence de solution non trivialement nulle.

Ceci n’est possible que si λ est solution de l’équation caractéristique

p(λ) := det

(
λI − A0 −

m∑
j=1

Aje
−λτj

)
= 0. (3.20)
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3.5. Sur la bifurcation de Hopf pour les systèmes différentiels multi - retards

Noter que l’équation ci - dessus est dite transcendante. Il est bien connu (voir

[19, 45, 51]) que cette équation transcendante a un nombre infini de racines λ ∈ C.

Précisément, l’état stationnaire linéarisé est asymptotiquement stable si toutes les

racines caractéristiques ont des parties réelles négatives, et instable si une ou plu-

sieurs racines ont des parties réelles positives [31]. Ici, le théorème de bifurcation de

Hopf énoncé au chapitre 2 s’applique en formulant les hypothèses suivantes :

i) Il existe une paire de racines conjuguées de l’équation (3.20) :

λ(τ1, . . . , τm) = a± iω0 (3.21)

ii) Il existe un vecteur de paramètre retard τ ∗ = (τ ∗1 , . . . , τ
∗
p ) tel que

Reλ(τ ∗1 , . . . , τ
∗
m) = 0 (3.22)

et
∂Reλ
∂τk

∣∣∣∣∣
τ∗

6= 0 k = 1, . . . , p. (3.23)

Sous ces deux hypothèses, en application du théorème 2.9, τ ∗ est un point de bi-

furcation de Hopf. Notre approche, voir [17] pour une discussion théorique, est de

rechercher des conditions nécessaires et suffisantes pour la stabilité dans un espace

de paramètres.

Le nombre de travaux réalisés pour localiser les points de bifurcation de Hopf

numériquement est relativement faible par rapport à ceux réalisés pour localiser les

points de bifurcation stationnaires. Compte tenu de ce qui précéde pour la détection

numérique des points de bifurcation de Hopf dans le cadre de paramètre multi -

retard, on doit résoudre équation

p(iω) = 0. (3.24)

Compte tenu de la structure de p, la détection des points de bifurcation de Hopf

est très difficile. Nous développons ce point au chapitre suivant en faisant d’abord

un rappel sur quelques techniques numériques souvent utilisées dans le cas de un
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3.5. Sur la bifurcation de Hopf pour les systèmes différentiels multi - retards

ou deux retards. Ensuite, nous proposons une nouvelle approche permettant de

généraliser la détection des points de bifurcation de Hopf dans le cas de plusieurs

retards.

Conclusion

Dans ce chapitre, nous avons fait un bref aperçu des systèmes dynamiques à

retards en précisant notamment la notion de stabilité pour ces systèmes. Nous avons

aussi présenté la notion de stabilité entrée - état.

Afin d’étudier l’impact des retards sur la qualité des solutions nous faisons recours

à la théorie des bifurcations de Hopf. Cependant, ici, le challenge est le calcul des

points de bifurcation de Hopf que nous aborderons au chapitre suivant.
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Chapitre 4

Approches numériques des

solutions oscillatoires de Hopf

Comme nous l’avons vu dans les chapitres précédents, la bifurcation de Hopf

produit des solutions oscillatoires qui constituent une transition entre les solutions

stables et instables. Cependant la détermination complète des points de bifurca-

tion pour des systèmes différentiels multi - retards est encore un sujet délicat. Il

faut noter que la détermination complète des points de bifurcation permettra leur

caractérisation pour mieux comprendre les phases transitoires des systèmes dyna-

miques nécessaires en épidémiologie.

Dans ce chapitre nous développons quelques aspects numériques de calcul des

points de bifurcation de Hopf et nous présentons un algorithme pouvant mener à la

généralisation complète de ces points.
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4.1. L’équation caractéristique

4.1 L’équation caractéristique

L’étude locale de la stabilité des systèmes différentiels à retards conduit à celle

d’un système de la forme

dx(t)

dt
= A0x(t) +

m∑
j=1

Ajx(t− τj), (4.1)

où Aj est une matrice constante n× n pour tous les j, 0 ≤ τj ≤ τ pour tout j et τ

fixé. L’équation caractéristique de ce système est alors

p(λ) := det

(
λI − A0 −

m∑
j=1

Aje
−λτj

)
= 0 (4.2)

Définition 4.1

L’état d’équilibre xe de (4.1) est dit absolument stable (c’est - à - dire stable asympto-

tiquement indépendamment des retards) si il est stable pour tous les retards τj ≥ 0. Il

est dit conditionnellement stable (c’est - à - dire stable asymptotiquement dépendant

des retards) si il est stable asymptotiquement pour τj dans certains intervalles mais

non nécessairement pour tous les τj.

Rappelons à toute fin utile les résultats ci - après. Le résultat suivant qui a été

prouvé par [58, 66] donne des conditions nécessaires et suffisantes pour la stabilité

absolue de (4.1).

Théorème 4.1

Le système (4.1) est absolument stable si et seulement si

(i) Re(λ) < 0, ∀ λ valeur propre de
m∑
j=0

Aj

(ii) det

(
iωI − A0 −

m∑
j=0

Aje
−iωτj

)
6= 0 ∀ ω.

L’hypothèse (i) garantit que le système (4.1) avec τj = 0 (1 ≤ j ≤ m) est stable

asymptotiquement, alors que l’hypothèse (ii) assure que iω n’est pas une racine de
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4.2. Cas de deux retards

l’équation (4.2). Clairement, le théorème assure qu’il ne peut y avoir de stabilité ab-

solue si l’équation caractéristique de (4.2) admet une racine imaginaire pure. Compte

tenu de (4.2), on voit bien que le théorème est particulièrement utile pour l’étude

de stabilité et de bifurcation de Hopf pour des systèmes différentiels à retards. En

effet, si la condition (ii) du théorème 4.1 n’est pas satisfaite alors l’équation ca-

ractéristique (4.2) admet une paire de racines imaginaires pures ±iω0 et le système

(4.1), dans ce cas, n’est plus inconditionnellement stable mais peut être condition-

nement stable. En se référant alors sur le théorème de Rouché [1, 17], la bifurcation

de Hopf apparait, c’est - à - dire, une famille de solutions périodiques bifurquées au

niveau de l’état d’équilibre autour du point critique τ ∗0 = a± iω0 où ±iω0 est racine

de l’équation caractéristique (4.2).

4.2 Cas de deux retards

4.2.1 Une caractérisation géométrique

L’équation caractéristique (4.2) peut s’écrire sous la forme

p(λ; τ1; τ2) = p0(λ) + p1(λ)e−λτ1 + p2(λ)e−λτ2 = 0 (4.3)

où les pi(λ) ; i = 0, 1, 2, sont des polynômes. Une caractérisation complète des solu-

tions de (4.3) n’est pas toujours possible. L’équation (4.3) peut se réécrire sous la

forme

1 + a1(λ)e−λτ1 + a2(λ)e−λτ2 = 0 (4.4)

où ai(λ) =
pi(λ)

p0(λ)
, (i = 1; 2). Dans le but de déterminer les solutions bifurquées

de Hopf de fréquence ω, on pose λ = iω solution de (4.4). Il s’ensuit que l’on doit

chercher ω tel que

1 + a1(iω)e−iωτ1 + a2(iω)e−iωτ2 = 0. (4.5)

Ces fréquences sont naturellement fonction des paramètres retard, mais en représentant

les fonctions 1, a1(iω)e−iωτ1 et a2(iω)e−iωτ2 dans le plan complexe, on déduit
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4.2. Cas de deux retards

des inégalités triangulaires :

|a1(iω)|+ |a2(iω)| > 1 (4.6)

et

−1 < |a1(iω)| − |a2(iω)| < 1. (4.7)

La fréquence de passage de l’ensemble peut être identifiée comme l’ensemble de ω

qui satisfont (4.6) et (4.7).

4.2.2 Détermination des bifurcations de Hopf sur la droite

τ2 − τ1 = τ0

Nous essayons ici de caractériser l’ensemble des points de bifurcation de Hopf

dans le plan (τ1, τ2) sur une droite d’équation τ2 − τ1 = τ0 où τ0 est un paramètre

fixé. En substituant τ2 dans (4.5), l’équation caractéristique s’écrit :

1 + a1(iω0)e−iω0τ1 + a2(iω0)e−iω0(τ1+τ0) = 0

d’où en posant a(iω0) = a1(iω0) + a2(iω0)e−iω0τ0 on a

1 + a(iω0)e−iω0τ1 = 0 (4.8)

qui est une équation à un seul retard. Ici, on remarquera que la condition nécessaire

d’existence des fréquences ω0 est donnée dans le plan complexe par la courbe d’équation

|a(iω0)| = 1. (4.9)

Cette équation permet de caractériser les fréquences ω0 indépendamment du re-

tard τ . Ayant caractérisé les fréquences ω0, les retards critiques sont déterminés en

séparant les parties réelle et imaginaire de (4.8). On obtient alors

1 +Re(a) cosω0τ1 + Im(a) sinω0τ1 = 0

−Re(a) sinω0τ1 + Im(a) cosω0τ1 = 0
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4.3. Un algorithme plus général : cas de plusieurs retards

De la deuxième équation on tire

sinω0τ1

cosω0τ1

=
Im(a)

Re(a)
(4.10)

d’où, en posant ψ(ω0) =
Im(a)

Re(a)
, il est facile de déduire le retard critique

τ ∗1 =
arctan(ψ(ω0))

ω0

+
kπ

ω0

, (k ∈ Z). (4.11)

Ainsi le diagramme de bifurcation est donné sur la figure 4.1 ci - après.

Remarquons que les points de bifurcation auraient pu être déterminés sur une

courbe quelconque en posant, par exemple, τ2 = g(τ1). Mais dans ces conditions, les

simplifications permettant de déterminer explicitement ne sont plus possibles. Dans

ce cas le seul recours est de procéder par des méthodes numériques. Cependant une

question pourait se poser sur la justification du choix de la courbe.

4.3 Un algorithme plus général : cas de plusieurs

retards

Nous proposons ici une nouvelle approche de calcul des points de bifurcation.

Cette approche est basée sur une transformation reductrice qui avait déjà été utilisée

pour l’optimisation globale des fonctions à plusieures variables et qui est basée sur la

notion des courbes α- dense [12]. Commençons d’abord par donner cette définition.

Définition 4.2

Une courbe définie par :

h : [0,M ]→
n∏
i=1

[xi, yi] est dite α- dense dans
n∏
i=1

[xi, yi] si :

∀ ω ∈
n∏
i=1

[xi, yi], ∃ θ ∈ [0,M ] tel que : d(ω, h(θ)) ≤ α

où d est la distance euclidienne dans Rn, M et α des constantes positives.

α est appelé paramètre de densification.
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τ2 - τ1=τ0

Figure 4.1 – Diagramme de bifurcation représentant les points de bifurcation sur

la droite d’équation τ2− τ1 = τ0, τ0 fixé arbitrairement. Les directions de bifurcation

de la stabilité vers l’instabilité sont représentées par les flèches.

57



4.3. Un algorithme plus général : cas de plusieurs retards

La généralisation de ce résultat dans Rd (d > 2) peut se faire facilement en itérant

le processus. Considérons trois variables τ1, τ2, τ3 dans R3, on a

τ1 = aθ1 cos θ1, τ2 = aθ1 sin θ1, τ3 = τ3. (4.12)

En reliant θ1 et τ3 par une seconde spirale d’Archimède : θ1 = aθ cos θ et τ3 = aθ sin θ,

on obtient

τ1 = a2θ cos θ cos(aθ cos θ), τ2 = a2θ cos θ sin(aθ cos θ), τ3 = aθ sin θ (4.13)

Pour déterminer les points de bifurcation de Hopf, on cherche les racines imaginaires

pures λ = ±iω. Cela revient à déterminer ω, un réel positif, tel que P (iω) = 0. En

posant F (ω, τ1, τ2, ..., τm) = Re(p(iω)) et G(ω, τ1, τ2, ..., τm) = Im(p(iω)) respecti-

vement les parties réelle et imaginaire de p(iω), les paramètres de bifurcation sont

obtenus en résolvant

F (ω, τ1, τ2, ..., τm) = 0 et G(ω, τ1, τ2, ..., τm) = 0. (4.14)

Sous certaines hypothèses de régularité sur les fonctions F et G, il existe un point

τ ∗ = (τ ∗1 , ..., τ
∗
m) et un réel ω∗ = ω∗(τ ∗1 , ..., τ

∗
m) tel que λ∗ = iω∗ soit solution de

l’équation (4.2).

Soit maintenant, pour un ε > 0 fixé, hε une courbe ε- dense et nous posons

Fε(ω, θ) = F (ω, hε(θ)) et Gε(ω, θ) = G(ω, hε(θ)). (4.15)

Supposons qu’il existe θ∗ et ω∗ε = ω∗ε(θ
∗) un couple de solutions du système suivant

Fε(ω, θ) = 0 et Gε(ω, θ) = 0. (4.16)

Le point
(
ω∗ε , hε(θ

∗
ε)
)

est évidemment une solution du système (4.15) dans lequel

hε(θ
∗
ε) est un point de bifurcation qui dépend asymptotiquement du paramètre ε.

Notons que le système (4.16) a moins de variables que le système (4.15) et peut donc

être plus facilement traité numériquement. En d’autres termes, une caractérisation

de l’espace de bifurcation peut être fait si les propriétés des courbes hε sont connues.
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Figure 4.2 – Un exemple d’un diagramme de bifurcation sur une courbe ε - dense

dans le cas de deux retards.
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4.4. Un exemple

Les figures 4.2 et 4.3 ci - après nous donne un exemple de diagramme de bifurcation

sur une courbe ε - dense pour un système à deux et trois retards. Notamment ce

concept permet d’aborder des systèmes à plusieurs retards. Nous donnons ici un

schéma algorithmique de calcul des points de bifurcation pour des systèmes multi -

retards.

1. Posons ε > 0, et définissons hε vérifiant (4.12) et (4.13) ;

2. Définissons les fonctions F et G en posant

F (ω, τ1, ..., τm) = Re(p(iω)) et G(ω, τ1, ..., τm) = Im(p(iω)) ;

3. Définissons Fε et Gε vérifiant la relation (4.15) ;

4. Déterminons (ω∗ε , θ
∗
ε) solution du système (4.16) ;

5. Posons τ ∗ε = hε(θ
∗
ε) est un point de bifurcation.

Il faut noter que l’étape 4 peut être faite en utilisant toutes méthodes itératives exis-

tantes. Pour ce faire, il est nécessaire de définir des valeurs de départ des paramètres

ω et θ, pour la résolution du système (4.16).

4.4 Un exemple

Pour illustrer le schéma numérique présenté ci - dessus, nous considérons l’exemple

ci - après. Pour résoudre le système non linéaire (4.16), on utilise la fonction intégrée

”fsolve” de matlab. Pour cet exemple illustratif, nous avons choisi ε = 0.9 comme

paramètre d’approximation.

ω0 = 1 et θ0 = 1.17 comme valeurs initiale de résolution en Matlab.

Considérons le système

ẋ(t) = A0x(t) + A1x(t− τ1) + A2x(t− τ2) (4.17)

avec

A0 =

 −1 0

1 1

 , A1 =

 −2 1

−2 0

 , A2 =

 −1 1

−2 0


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Figure 4.3 – Un exemple d’un diagramme de bifurcation sur une courbe ε - dense

dans le cas de trois retards.
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L’équation caractéristique de (4.17) est de la forme suivante :

P (λ) = λ2−3e−λτ1−2e−λτ2 +2λe−λτ1 +λe−λτ2 +2e−2λτ1 +2e−2λτ2 +4e−λ(τ1+τ2)−1 = 0.

(4.18)

C’est une équation transcendate. En se servant de l’algorithme présenté ci - dessus

on obtient le point de bifurcation ω∗ = 1.3011, τ ∗1 = 0.3884, τ ∗2 = 0.266. La solution

du système (4.17) correspondante est représentée sur la figure 4.4.
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Figure 4.4 – Représentation de la trajectoire de solution pour l’exemple à partir

de l’état initiale x(0) = (1.301, 1.3). Pour toutes les figures, sur le côté gauche, la

première composante de x(t) est représentée par la ligne en trait plein, tandis que la

seconde est représentée par la ligne en pointillée. La trajectoire de bifurcation et le

portrait de phase sont représentés dans les figures (a) et (b). Les figures (c) et (d)

représentent le cas de stabilité. Les figures (e) et (f) illustrent le cas d’instabilité .
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4.4. Un exemple

Conclusion

Nous avons mis en place un algorithme efficace qui détermine les points de bifur-

cation de Hopf d’un système d’équations différencielles multi - retards. L’approche

numérique semble être une approche intéressante et un outil puissant pour traiter ce

type de problèmes. Il faut noter que l’utilisation de la notion des courbes ε - denses

est une originalité qui a permis convergence numérique de l’algorithme.
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Chapitre 5

Application à un problème

d’épidémiologie

Ce chapitre est consacré à l’étude d’un cas pratique. L’objectif visé est la valida-

tion des résultats théoriques et numériques présentés aux chapitres précédents. A cet

effet, nous nous proposons d’effectuer des simulations numériques pour un modèle

épidémiologique décrivant la dynamique du VIH/SIDA. En fait, le but recherché

ici est l’analyse de l’impact des paramètres retards sur la dynamique transitoire du

VIH/SIDA des états stables vers des états instables.

Plusieurs modèles ont été proposés pour décrire la dynamique de transmission

des maladies infectieuses (voir [20, 26, 50, 67] par exemple). Dans [14, 23], les auteurs

proposent une étude des modèles SI-SIR pour décrire une dynamique de transmission

dans laquelle la population humaine est supposée constante. Dans [24], l’auteur

n’utilise pas un taux d’infection classique dans la transmission de l’infection, seule

la stabilité globale de l’équilibre endémique est traitée. Nous nous intéressons, ici,

plutôt à un problème de l’évolution de l’état des sujets atteints du VIH/SIDA soumis

ou non à un traitement thérapeutique.
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5.1 Paramètres déterminants de la dynamique du

VIH/SIDA

Afin de mieux analyser notre approche dans le cadre de l’infection du VIH/SIDA,

nous décrivons dans cette section quelques paramètres expliquant l’évolution du

virus dans l’organisme.

5.1.1 Le système immunitaire

Le système immunitaire est un ensemble structuré d’éléments (cellules, molécules,

. . .) qui ont pour charge la défense de l’organisme contre différents agents nuisibles

(virus, bactéries, parasites . . .). Une réponse immunitaire est une réaction du système

suite à une agression de l’organisme et qui s’exprime principalement par des actions

des cellules lymphocytes T CD4+ et CD8+ qui sont des catégories de globules

blancs.

5.1.1.1 Les lymphocytes T CD4+

Les lymphocyte CD4+ (T4) ou TH (helper) (le T pour Thymus 1) jouent un rôle

important dans la réaction immunitaire car elles sont responsables de la coordina-

tion et de l’activation des autres agents T8, des macrophages, ou la production des

cytokinese 2 par exemple. Elles sont produites par le thymus, et comme leur nom

l’indique (helper), elles aident à activer la réaction immunologique en présence du

VIH. Lorsque le virus est aperçu par les cellules CD4+, ces dernières entrent en pro-

lifération et, selon l’environnement dans lequel elles se trouvent, elles déclenchent :

– une immunité à médiation humorale par la production des anticorps,

– et une immunité à médiation cellulaire qui stimule les cellules CD8+ dont le

rôle est la destruction des cellules infectées.

1. Organe du système immunitaire responsable de la production des lymphocytes T .

2. Hormones du système immunitaire qui stimulent les cellules de la réponse immunitaire.
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Les cellules TH considérées comme la clé de la réaction immunitaire sont cibles de

l’infection par le virus VIH qui les considère comme un environnement adéquat pour

accomplir son cycle de prolifération. Leur destruction par le VIH paralyse la défense

immunitaire de sa source [53].

5.1.1.2 Les lymphocytes T CD8+

Les cellules lymphocytes T CD8+ contiennent une protéine CD8 sur leurs mem-

branes, appelée également CTL pour leur pouvoir toxique. Quand une cellule CD4+

est infectée par le VIH, elle présente sur sa membrane un antigène particulier. Ce

dernier sera considéré comme un signal d’activation des cellules CD8 dites näıves

qui deviennent actives.

5.1.2 Le virus de l’immunodéficience humain (VIH)

C’est un rétrovirus qui détruit le système immunitaire humain en infectant les

cellules CD4 qui activent la défense de l’organisme et conduit lentement et après

une longue période d’incubation au Syndrome d’Immunodéficience Acquise (SIDA)

qui est la complication la plus dangereuse de l’infection par le VIH où le système

immunitaire atteint un état affaibli et devient cible des différentes maladies oppor-

tunistes.

Contrairement aux différents organismes cellulaires vivants constitués d’ADN 3,

le VIH appartient aux rétrovirus c’est - à - dire il est constitué d’un simple brin

d’ARN 4 en double exemplaires, plus des protéines nécessaires à sa réplication.

3. ADN : Acide désoxyribonucléique. Elle constitue la molécule support de l’information

génétique héréditaire.

4. ARN : Acide ribonucléique. Ce sont des molécules constituées par l’assemblage de ribo-

nucléotides, qui possèdent de très nombreuses fonctions dans la cellule.
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Figure 5.1 – Une présentation du cycle du VIH dans l’organisme.
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5.2 Présentation d’un modèle entrée - état de la

dynamique de l’infection VIH

Il existe dans la littérature beaucoup de modèles mathématiques qui cherchent à

donner une caractérisation de la dynamique de l’infection au VIH lors une thérapie.

Plusieurs chercheurs ont tenté d’utiliser ces modèles pour estimer le temps nécessaire

de l’éradication du virus. Ces prévisions impliquent des périodes qui s’étendent au -

delà de ce qui est approprié pour l’approximation de la dynamique non linéaire

par un modèle linéaire. Dans [9], les auteurs soutiennent que des modèles non

linéaires plus complexes sont nécessaires pour décrire avec précision à long terme

la décroissance virale. Des efforts récents [6] avec des données in vitro suggèrent

l’importance de la modélisation des retards distribués avec une certaine prudence.

L’incorporation de ceux - ci dans les modèles peut conduire à des meilleures esti-

mations de la durée de vie du virus détectée sur des patients subissant une multi -

thérapie.

5.2.1 Variables du modèle

Le modèle que nous nous proposons d’étudier à été élaboré d’une part par Cal-

laway et Perelson [11], et d’autre part, par Bonhoeffer [9] qui y a ajouté un com-

partiment qui décrit la dynamique de la réponse immunitaire. Il décrit l’évolution

de l’infection VIH dans l’organisme dans le cadre d’un traitement thérapeutique.

Le diagramme compartimental permettant de générer les équations du modèle est

présenté sur la Figure 5.2. Les éléments déterminants de cette schématisation sont :

– Les cellules cibles non infectées de type 1 produites par le thymus. Ces cellules

possèdent sur leurs membranes une protéine CD4+ qui permet de reconnâıtre

la présence d’un antigène (virus) dans l’organisme ;

– les cellules cibles non infectées de type 2 appelées aussi macrophages. Ces

cellules sont produites par la moelle osseuse qui sert à la destruction des cellules
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infectées ;

– la réponse immunitaire qui est la mise en route des deux types des cellules

infectées ;

– les cellules de type 1 infectées ;

– les cellules de type 2 infectées ;

– les virus (virion infectieux) libres, car le patient prend des inhibiteurs qui vont

empêcher certains virus d’agir ;

– les virus non infectieux ;

– le facteur de traitement dû à la prise des inhibiteurs RTI (médicaments

empêchant les infectées de se répliquer en virions) ;

– le facteur de traitement dû à la prise des inhibiteurs PI (médicaments empêchant

les virions de devenir infectieux).

Ce modèle qui prend en compte ces 9 facteurs permet de comprendre les échanges

entre les compartiments des cellules non infectées, virus, cellules infectées et réponse

immunitaire. Les variables explicatives intervenant dans ce modèle sont :

– T1(t) : Concentration des cellules cibles T1 ;

– T2(t) : Concentration des cellules cibles T2 ;

– T ∗1 (t) : Concentration des cellules infectées T1 ;

– T ∗2 (t) : Concentration des cellules infectées T2 ;

– VI(t) : Concentration des virus infectieux ;

– VNI(t) : Concentration des virus non encore infectieux ;

– E(t) : Concentration des cellules constituant la réponse immunitaire.
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5.2. Présentation d’un modèle entrée - état de la dynamique de l’infection VIH

Paramètres Description

λ1 Le taux de production de cellules cibles de type 1

d1 Le taux de mortalité de cellules cibles de type 1

ε L’efficacité des traitements de la population 1

k1 Le taux d’infection de la population 1

λ2 Le taux de production de cellules cibles de type 2

d2 Le taux de mortalité de cellules cibles de type 2

f Réduction de l’efficacité du traitement dans la population 2

k2 Le taux d’infection de la population 2

δ Le taux de mortalité des cellules infectées

m1 Le taux de clairance immunitaire induite par la population 1

m2 Le taux de clairance immunitaire induite par la population 2

NT Virions produits par cellules infectées

c Le taux de mortalité naturelle par le virus

ρ1 Nombre moyen de virions infectieux de cellules de type 1

ρ2 Nombre moyen de virions infectieux de cellules de type 2

λE le taux de production immunitaire effectrice

bE Le taux de natalité maximale pour effecteurs du systèmes immunitaire

Kb Le taux de naissance pour effecteur immunitaire

dE Le taux de mortalité maximale pour effecteurs du système immunitaire

Kd Le taux de mortalité pour effecteur immunitaire

δE Le taux de mortalité naturelle pour les effecteurs du système immunitaire

Table 5.1 – Paramètres du modèle.
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Figure 5.2 – Un modèle compartimental présentant la dynamique des échanges lors

d’une infection V IH ainsi que les directions de contrôle médicamental.
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5.2.2 Dérivation des équations du modèle sans retard

On fait l’hypothèse que deux types de médicament ont un effet de contrôle. On

admet alors que le contrôle de la quantité de médicament RTI 5 dans le sang est

décrit par

ε̄1(t) = ε1u(t), ε1 ∈ [0, 1] (5.1)

et celle des médicaments PI 6 par

ε̄2(t) = ε2u(t), ε2 ∈ [0, 1] (5.2)

où u(t) est une fonction de contrôle. Compte tenu des échanges entre compartiments

(figure 5.2), les équations décrivant les variations des concentrations des cellules

cibles Ti (i = 1, 2) dans le sang peuvent être exprimées par

dT1

dt
= λ1 − d1T1 − (1− ε̄1(t))k1VIT1, (5.3)

dT2

dt
= λ2 − d2T2 − (1− f ε̄1(t))k2VIT2, (5.4)

où

– λ1 (resp. λ2) est le taux de production des cellules T1(CD4+) (resp. T2 (ma-

crophage)) par jour ;

– d1 (resp. d2) désigne le taux de mortalité naturelle des cellules T1 (resp. T2)

par jour ;

– k1 (resp. k2) est le taux avec lequel les virus infectieux attaquent les cellules

T1 (resp. T2).

Les effets du médicament se mesurent alors par les facteurs 1− ε̄1(t) et 1− f ε̄1(t).

Par contre les variations des concentrations des cellules T1 (resp. T2) infectées dans

5. Les inhibiteurs de la transcriptase inverse, enzyme responsable de la multiplication des gènes

viraux dans les cellules sanguines.

6. Les inhibiteurs de la protéase, qui participe à la finition des virus produits par les cellules

infectées.
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le sang sont exprimées par

dT ∗1
dt

= (1− ε̄1(t))k1VIT1 − δT ∗1 −m1ET
∗
1 , (5.5)

dT ∗2
dt

= (1− f ε̄1(t))k2VIT2 − δT ∗2 −m2ET
∗
2 , f ∈ [0, 1], (5.6)

où m1 (resp. m2) représente le taux de mortalité journalier des cellules T1 (resp. T2)

infectées dû à leur destruction par les macrophages et δ désigne le taux de mortalité

naturelle des cellules infectées. La concentration des virus infectieux dans le sang

est décrite par

dVI
dt

= (1−ε̄2(t))103NT δ(T
∗
1 +T ∗2 )−cVI−[(1−ε̄1(t))ρ1103k1T1+(1−f ε̄1(t))ρ2103k2T2]VI ,

(5.7)

où NT désigne le taux de productivité des virus par les cellules T1 et T2 infectées,

c le taux de mortalité naturelle journalier des virus infectieux, ρ1 caractérise la

capacité d’anti-rétroviraux empêchant la réplication des cellules T ∗1 et ρ2 représente

le coefficient avec lequel la RTI empêche la replication en virions des cellules T ∗2 .

Dans l’équation (5.7), 103 a été introduit pour convertir les microlitres en millilitres

car l’unité de charge virale est la copie par millilitre. La variation des virus non

infectieux est quant a elle décrite par l’équation suivante

dVNI
dt

= ε̄2(t)103NT δ(T
∗
1 + T ∗2 )− cVNI . (5.8)

La description de la réponse immunitaire est donnée par l’équation

dE

dt
= λE +

bE(T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) +Kb

E − dE(T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) +Kd

E − δEE (5.9)

où λE est le taux de production naturelle des cellules qui constituent la réponse

immunitaire par jour, bE désigne le taux de production des cellules qui composent la

réponse immunitaire due à la prolifération des cellules T ∗1 et T ∗2 ; dE représente le taux

d’élimination des cellules constituant la réponse immunitaire, δE le taux de morta-

lité naturelle des cellules de la réponse immunitaire. Kb représente la constante de

saturation pour la naissance effectrice immunisée tandis que Kd désigne la constante
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de saturation pour la mort effectrice immunisée.

Si on désigne par Xe = (T e1 , T
e
2 , T

∗,e
1 , T ∗,e2 , V e

I , V
e
NI , E

e)T l’état d’équilibre, alors

compte tenu des équations du système, on a

λ1 − d1T
e
1 − k1V

e
I T

e
1 = 0 (5.10)

λ2 − d2T
e
2 − k2V

e
I T

e
2 = 0 (5.11)

k1V
e
I T

e
1 − δT

∗,e
1 −m1E

eT ∗,e1 = 0 (5.12)

k2V
e
I T

e
2 − δT

∗,e
2 −m2E

eT ∗,e2 = 0 (5.13)

NT δ103(T ∗,e1 + T ∗,e2 )− cV e
I − [ρ1103k1T

e
1 + ρ2103k2T

e
2 ]V e

I = 0 (5.14)

103NT δ(T
∗,e
1 + T ∗,e2 )− cV e

NI = 0 (5.15)

λE +
bE(T ∗,e1 + T ∗,e2 )

(T ∗,e1 + T ∗,e2 ) +Kb

Ee − dE(T ∗,e1 + T ∗,e2 )

(T ∗,e1 + T ∗,e2 ) +Kd

Ee − δEEe = 0. (5.16)

On notera que ces équations d’équilibre sont calculées en posant ε̄i(t) ≡ 0,

i = 1, 2. L’état d’équilibre obtenu est donc celui d’un patient non soumis à une

action thérapeutique. Après quelques calculs, il vient

T e1 =
λ1

d1 + k1V e
I

, T e2 =
λ2

d2 + k2V e
I

; (5.17)

T ∗,e1 + T ∗,e2 =

[
c(d1 + k1V

e
I ) + λ1k1103ρ1

d1 + k1V e
I

+
λ2k2103ρ2

d2 + k2V e
I

]
V e
I

H1

; (5.18)

V e
NI = 0; (5.19)

Ee = − λE
bE(T ∗,e1 + T ∗,e2 )

(T ∗,e1 + T ∗,e2 ) +Kb

− dE(T ∗,e1 + T ∗,e2 )

(T ∗,e1 + T ∗,e2 ) +Kd

− δE
(5.20)

où on a posé

H1 = 103NT δ (5.21)

Nous avons aussi

T ∗,e1 =
k1T

e
1

δ +m1Ee
V e
I , T ∗,e2 =

k2T
e
2

δ +m2Ee
V e
I . (5.22)
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Ainsi des relations (5.17) et (5.20), il s’ensuit que T ∗,e1 et T ∗,e2 dépendent de V e
I .

De la relation (5.22), on peut tirer

T ∗,e1 + T ∗,e2 =

(
k1T

e
1

δ +m1Ee
+

k2T
e
2

δ +m2Ee

)
V e
I . (5.23)

Les égalités (5.18)-(5.23) permettent de tirer la valeur de V e
I . Par conséquent, les

variables restantes T e1 , T
e
2 , T

∗,e
1 , T ∗,e2 , Ee se déduisent aisément puisque exprimées

en fonction de V e
I .

5.2.3 Modèle à retard

Afin de mieux comprendre l’impact des traitements sur la dynamique de l’in-

fection VIH, nous introduisons dans le modèle mathématique précédent des retards

intracellulaires :

– le premier retard τ1 est défini comme le temps de l’entrée du virus dans la cel-

lule cible. C’est l’étape de la transcriptase inverse qui avait été déjà considérée

dans [18] ;

– le deuxième retard τ2 représente le temps entre l’entrée du virus et la produc-

tion de nouveaux virus ;

– le troisième retard τ3 correspond au temps nécessaire pour qu’un nouveau virus

devienne infectieux et

– le quatrième retard τ4 représentant le temps nécessaire pour qu’un virus nou-

vellement infecté devienne mûr.
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Nous pouvons alors réécrire les équations du modèle comme suit :

dT1

dt
= λ1 − d1T1 − (1− ε̄1(t))k1VI(t− τ1)T1(t− τ1), (5.24)

dT2

dt
= λ2 − d2T2 − (1− f ε̄1(t))k2VI(t− τ2)T2(t− τ2), (5.25)

dT ∗1
dt

= (1− ε̄1(t))k1VIT1 − δT ∗1 (t− τ3)−m1ET
∗
1 , (5.26)

dT ∗2
dt

= (1− f ε̄1(t))k2VIT2 − δT ∗2 (t− τ4)−m2ET
∗
2 , (5.27)

dVI
dt

= (1− ε̄2(t))NT δ103(T ∗1 + T ∗2 )− cVI (5.28)

− [(1− ε̄1(t))ρ1103k1T1 + (1− f ε̄1(t))ρ2103k2T2]VI ,

dVNI
dt

= ε̄2(t)103NT δ(T
∗
1 + T ∗2 )− cVNI (5.29)

dE

dt
= λE +

bE(T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) +Kb

E − dE(T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) +Kd

E − δEE. (5.30)

Nous souhaitons donc étudier l’impact des retards τi, i = 1, 2, 3, 4 sur des états

asymptotiques au voisinage de l’équilibre. En linéarisant les équations (5.24) - (5.30)

autour d’un point d’équilibre, on se ramène à un système

dX(t)

dt
= A0X(t) +

4∑
i=1

AiX(t− τi) (5.31)

où l’on a posé

X(t) =

(
T1− T e1 , T2− T e2 , T ∗1 − T

∗, e
1 , T ∗2 − T

∗, e
2 , VI − V e

I , VNI − V e
NI , E −Ee

)T

avec

Xe =

(
T e1 , T

e
2 , T

∗, e
1 , T ∗, e2 , V e

I , V
e
NI , E

e

)T
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point d’équilibre et où les matrices Ai sont définies par

A0 =



−d1 0 0 0 0 0 0

0 −d2 0 0 0 0 0

0 0 −m1E
e 0 0 0 0

0 0 0 −m2E
e 0 0 0

a51 a52 0 0 a55 0 0

0 0 0 0 0 −c 0

0 0 0 0 0 0 a77



avec

a51 = −(1− ε̄1(t))ρ1103k1V
e
I ;

a52 = −(1− f ε̄1(t))ρ2103k2V
e
I ;

a55 = −c− (1− ε̄1(t))ρ1103k1T
e
1 − (1− f ε̄1(t))ρ2103k2T

e
2 ;

a77 =
bE(T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) +Kb

− dE(T ∗1 + T ∗2 )

(T ∗1 + T ∗2 ) +Kd

− δE.

A1 =



−(1− ε̄1(t))k1V
e
I 0 0 0 −(1− ε̄1(t))k1T

e
1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


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A2 =



0 0 0 0 0 0 0

0 −(1− f ε̄1(t))k2V
e
I 0 0 −(1− f ε̄1(t))k2T

e
2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



A3 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

−δ 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, A4 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −δ 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


.

L’équation caractéristique de (5.31) s’écrit donc

P (λ) = det
(
λI − A0 − A1e

−λτ1 − A2e
−λτ2 − A3e

−λτ3 − A4e
−λτ4

)
= 0. (5.32)

L’étude numérique qui va s’en suivre, comme nous l’avons fait aux chapitres trois

et quatre, est entièrement basée sur celle des racines de l’équation (5.32).

5.3 Simulations numériques

Pour nos simulations, nous avons considéré le cas d’un patient qui a été suivi

au Massachussets General Hospital durant la période allant de 1996 à 2004. Ses

paramètres identifiés dans [10] sont consignés sur la table 5.2. Compte tenu des

équations d’équilibre (5.10) - (5.23), en posant ε̄i(t) ≡ 0, i = 1, 2 on obtient deux

états d’équilibre, l’un correspond à un cas de non infection et l’autre à celui d’un

patient infecté. Les valeurs d’équilibre sont consignées sur la table 5.3.
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λ1 = d1 = ε1 = k1 = λ2 = d2 =

1.096 10−3 0.75 2.407× 10−7 0.10099 0.022109

f = k2 = δ = m1 = m2 = NT =

5.3915× 10−1 5.5290× 10−4 0.18651 0.024385 0.013099 19.41

c = ρ1 = ρ2 = λE = bE = Kb =

4.784 1 1 9.9085× 10−3 1.299× 10−2 0.39087

dE = Kd = δE = ε2 =

0.010213 0.83790 0.070299 0.75

Table 5.2 – Paramètres d’un patient identifiés par lissage de données cliniques de

1996 à 2004.

Paramètre d’équilibre 1er point d’équilibre (EQ1) 2er point d’équilibre (EQ2)

T e1 (cellulles/µl) 1096 814.6232

T e2 (cellulles/µl) 4.5678 0.1238

T ∗,e1 (cellulles/µl) 0 1.4799

T ∗,e2 (cellulles/µl) 0 0.5213

V e
I (copies/ml) 0 1463.7949

V e
NI (copies/ml) 0 0

Ee (cellulles/µl) 0.1409 0.1487

Pas d’infection Déjà infecté

Table 5.3 – Les points d’équilibre du système (5.24)-(5.30) relatifs à un patient

dont les paramètres sont consignés sur la table 5.2.
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Notre objectif, ici, est d’estimer les états transitoires du patient en fonction des

paramètres retards puis de simuler l’impact des traitements autour de ces états.

5.3.1 Estimation des paramètres de bifurcation de Hopf

Considérant l’approche développée au chapitre quatre, nous posons

τ1 = r1 cos θ1, τ2 = r1 sin θ1, r1 = aθ1

τ3 = r2 cos θ2, τ4 = r2 sin θ2, r2 = aθ2 (5.33)

θ1 = r cos θ, θ2 = r sin θ, r = aθ θ ≥ 0.

Ce qui nous permet d’exprimer les quatre paramètres retards τ1, τ2, τ3, τ4 en

fonction de la seule variable θ. Nous obtenons alors

τ1 = a2θ cos θ cos(aθ cos θ)

τ2 = a2θ cos θ sin(aθ cos θ)

τ3 = a2θ sin θ cos(aθ sin θ) (5.34)

τ4 = a2θ sin θ sin(aθ sin θ).

On vérifie aisément que les équations (5.34) définissent une courbe a - dense dans l’es-

pace R4 des paramètres retards. A toute fin utile, pour notre simulation numérique

nous avons considéré :

a = 0.9.

Cette valeur est prise aussi petite que possible pour permettre d’avoir une courbe qui

remplisse R4 aussi près que possible. Pour l’ensemble de nos simulations l’étude lo-

cale se fait autour d’un état d’équilibre infectieux table 5.3 et l’état initial considéré

est celui d’un patient infecté dont les paramètres sont donnés sur la table 5.2. L’appli-

cation de l’algorithme développé au chapitre quatre pour différentes valeurs initiales

de θ nous permet de déterminer quelques valeurs simulées des paramètres retards
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de Hopf. Des exemples de simulation de ces paramètres sont présentés sur les tables

5.4, 5.5 et 5.6.

5.3.2 Simulation des états transitoires pour un patient in-

fecté

En considérant les conditions initiales et d’équilibre de la section précédente nous

déterminons les états correspondant aux divers paramètres retards des tables 5.4 -

5.6. Ces états sont représentés sur les figures 5.5 - 5.9. Sur chacune d’elles nous avons

représenté un état stable et un état instable correspondant aux paramètres retards

proches du point de bifurcation de Hopf.

La figure 5.5 représente la simulation d’un cas où le patient n’est pas soumis à

un traitement thérapeutique. Ce qui correspond a un contrôle nul (ε̄i(t) ≡ 0 ∀ i =

1, 2). Les figures 5.6, 5.7, 5.8 et 5.9 correspondent au cas où le patient est soumis à

un traitement thérapeutique (ε̄i(t) 6≡ 0,∀ i = 1, 2). A cet effet deux scénarios ont

été considérés pour le contrôle thérapeutique de l’infection (voir figures 5.3 et 5.4).

Le premier protocole (figure 5.3) indique une interruption du traitement structurée

progressivement entre le 30 ème jour et le 60 ème jour et qui reprend le traitement à

partir du 61 ème jour jusqu’au 75 ème jour. Par contre, au second protocole (figure

5.4) l’interruption du traitement se fait progressivement entre le 30 ème jour et le

60 ème jour.
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Paramètres retards Stabilité Bifurcation de Hopf Instabilité

τ1 8.05 9.0574 9.765

τ2 1.123 1.7493 2.957

τ3 0.50 0.5039 1.12

τ4 0.234 0.9647 1.321

Table 5.4 – Paramètres retards obtenus par résolution de l’algorithme avec la valeur

initiale θ0 = 9.279.

Paramètres retards Stabilité Bifurcation de Hopf Instabilité

τ1 7.60 8.6604 9.650

τ2 1.80 2.8028 3.921

τ3 0.0052 0.0078 2.052

τ4 1.56 1.5642 2.756

Table 5.5 – Paramètres retards obtenus par résolution de l’algorithme avec la valeur

initiale θ0 = 9.254.

Paramètres retards Stabilité Bifurcation de Hopf Instabilité

τ1 0.47 0.0947 2.09

τ2 0.01 0.0101 1.01

τ3 0.013 0.0113 1.13

τ4 1.4285× 10−4 1.4285× 10−4 2.4285× 10−4

Table 5.6 – Paramètres retards obtenus par résolution de l’algorithme avec la valeur

initiale θ0 = 0.076.
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Figure 5.3 – Scénario 1 : un protocole de traitement imposé à un patient du

VIH/SIDA sur une durée de 100 jours.
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Figure 5.4 – Scénario 2 : un protocole de traitement imposé à un patient du

VIH/SIDA sur une durée de 100 jours.
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Figure 5.5 – Evolution des concentrations des cellules CD4+(T1) et (T2) par rapport

à leurs valeurs d’équilibre T e1 et T e2 et la Variation des virus infectieux (VI) par

rapport à sa valeur d’équilibre V e
I dans le cas ε̄i(t) ≡ 0. Ces simulations sont relatives

aux paramètres retards de la table 5.4. Les phases transitoires sont représentées de

la gauche vers la droite (la phase asymptotiquement stable vers la phase instable) et

les figures au centre correspondent au paramètre de bifurcation de Hopf.
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Figure 5.6 – Evolution des concentrations des cellules CD4+(T1) et (T2) par rapport

à leurs valeurs d’équilibre T e1 et T e2 et la Variation des virus infectieux (VI) par

rapport à sa valeur d’équilibre V e
I dans le cas ε̄i(t) 6≡ 0. Ces simulations sont relatives

aux paramètres retards de la table 5.4. Les phases transitoires sont représentées de

la gauche vers la droite (la phase asymptotiquement stable vers la phase instable)

et les figures au centre correspondent au paramètre de bifurcation de Hopf selon le

protocole de traitement de la figure 5.3 (Scénario 1).
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Figure 5.7 – Evolution des concentrations des cellules CD4+(T1) et (T2) par rapport

à leurs valeurs d’équilibre T e1 et T e2 et la Variation des virus infectieux (VI) par

rapport à sa valeur d’équilibre V e
I dans le cas ε̄i(t) 6≡ 0. Ces simulations sont relatives

aux paramètres retards de la table 5.4. Les phases transitoires sont représentées de

la gauche vers la droite (la phase asymptotiquement stable vers la phase instable)

et les figures au centre correspondent au paramètre de bifurcation de Hopf selon le

protocole de traitement de la figure 5.4 (Scénario 2).
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Figure 5.8 – Evolution des concentrations des virus infectieux (VI) par rapport à sa

valeur d’équilibre V e
I dans le cas ε̄i(t) 6≡ 0 pour les paramètres retards de la table 5.5.

Les figures 5.8 (a), (b) et (c) concernent l’évolution des concentration relativement

au protocole de traitement de la figure 5.3 (Scénario 1) et les figures 5.8 (d), (e) et

(f) celle du protocole de traitrement de la figure 5.4 (Scénario 2).
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Figure 5.9 – Evolution des concentrations des virus infectieux (VI) par rapport à sa

valeur d’équilibre V e
I dans le cas ε̄i(t) 6≡ 0 pour les paramètres retards de la table 5.6.

Les figures 5.9 (a), (b) et (c) concernent l’évolution des concentrations relativement

au protocole de traitement de la figure 5.3 (Scénario 1) et les figures 5.9 (d), (e) et

(f) celle du protocole de traitement de la figure 5.4 (Scénario 2).
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5.3.3 Remarques et discussions

Nos simulations ont été menées pour un cas d’un patient infecté dont l’état initial

est proche de son état d’équilibre infectieux. Après avoir déterminé les paramètres

de bifurcation de Hopf, nous avons envisagé trois scénarios.

Dans le premier scénario, le patient n’est pas soumis à un traitement pouvant

contrôler l’évolution de son infection. La simulation des phases transitoires de la

dynamiques de sa maladie est présentée sur la figure 5.5 et elle correspond aux pa-

ramètres retards de la table 5.4. On peut remarquer que le caractère transitoire est

très accentué pour les cellules T2 (figure 5.5 (d), figure 5.5 (e) et figure 5.5 (f)) et pour

la charge virale VI (figure 5.5 (g), figure 5.5 (h) et figure 5.5 (i)). Ceci montre bien

qu’une petite perturbation autour du paramètre retard de Hopf permet de ramener

le patient de son état stable (figure 5.5 (d) et figure 5.5 (g)) a son état instable (figure

5.5 (f) et figure 5.5 (i)). Dans cette situation d’instabilité il apparait qu’en l’absence

de traitement l’état du malade s’aggrave sérieusement à partir du 50 ème jour d’un

état proche de l’équilibre. Dans le cas de stabilité et du point de bifurcation, l’état

du malade reste stationnaire autour de l’équilibre mais une petite perturbation des

paramètres retards peut permettre de basculer vers un état instable.

Dans le deuxième et troisième scénarios le patient est soumis à un protocole de

traitement (figures 5.3 et 5.4). Les différentes simulations des états du patient en

fonction des paramètres retards sont alors présentées en figure 5.6, 5.7, 5.8 et 5.9.

Les figures 5.6 et 5.7 montrent que pour les paramètres retards de la table 5.4, le

traitement se révéle plutôt efficace dans la région de stabilité et assez efficace pour

les paramètres de Hopf aussi bien pour le premier protocole de traitement que le

deuxième. Sur les figures 5.8 et 5.9 on y compare les charges virales selon les deux

protocoles de traitement de notre simulation relativement aux paramètres des tables

5.5 et 5.6. Pour les paramètres de la table 5.5 la figure 5.8 montre que les deux pro-
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tocoles de traitement sont plutôt efficaces dans la région de stabilité et qu’il y a

échec thérapeutique lorsqu’on bascule vers le point de bifurcation de Hopf. Pour les

paramètres de la table 5.6, la figure 5.9 montre que le traitement est efficace aussi

bien dans la région de stabilité que dans celle qui est instable.

Enfin, en conclusion, on peut noter que d’autres simulations avec d’autres types

de protocoles de traitement peuvent donner des résultats très différents. Toutefois

ces simulations peuvent donc permettre d’expliquer l’echec ou le succès d’un proto-

cole de traitement et par voie de conséquence d’effectuer un choix en fonction des

paramètres retards du patient.
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Chapitre 6

Conclusion générale et

perspectives

Les travaux que nous avons menés au cours de cette thèse avaient pour objectif

fondamental de donner une caractérisation des points de bifurcation de Hopf pour

les systèmes dynamiques multi - retards. L’approche considérée tout au long de ce

travail repose principalement sur la notion de la stabilité des systèmes multi - retards.

Le premier chapitre a permis de situer notre étude, en dressant un état de l’art

sur les systèmes dynamiques multi - retards. Par ailleurs, nous avons aussi rappelé

les résultats fondamentaux sur la stabilité des systèmes dynamiques multi - retards.

Notamment nous avons porté une attention particulière sur la théorie des bifurca-

tions de Hopf pour l’analyse de la stabilité des systèmes dynamiques multi - retards.

Notre contribution essentielle apparait au niveau du quatrième chapitre de cette

thèse qui nous a conduit à l’élaboration d’un algorithme de calcul des points de

bifurcation de Hopf dans le cas de plusieurs retards.

Nous avons simulé nos résultats théoriques sur un problème de contrôle thérapeutique

du VIH/SIDA. Dans le cadre de cette étude, il nous a été donc possible d’établir
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l’existence d’un état d’équilibre infectieux pour un patient, c’est - à - dire un état

où le malade est infecté mais est dans la situation d’un porteur saint. A l’aide de

la théorie de bifurcation de Hopf, nos simulations ont permis de calculer des pa-

ramètres pour lesquels toute perturbation permet de basculer d’un état stable à

un état instable en passant par une phase transitoire de Hopf. En simulant avec

différents protocoles de traitement nous avions mis en évidence l’impact de retards

sur l’efficacité des traitements.

Les résultats obtenus dans ce travail ouvrent quelques perspectives qui méritent

qu’on s’y attele dans nos futurs travaux. Nos travaux ont permis certes de développer

une approche plus générale de calcul des points de bifurcation de Hopf dans le cadre

des systèmes différentiels à retards mais la caractérisation complète qui consiste

aussi bien à déterminer l’espace des points de bifurcation ainsi que leurs directions

n’a pas été développée.

D’un point de vue applications, les paramètres de Hopf permettent d’expliquer les

transitions entre états stables et instables. Cependant l’identification physique des

paramètres retards se révéle être un sujet très difficile qu’il conviendra d’aborder

avec attention dans nos futurs travaux de recherche.
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Abstract 

The Hopf bifurcation is known to be important for the stability study of 

parametric dynamical systems, in the sense that it provides oscillators 

solutions which are the transition from stability to instability regions. For 

differential equations with multiple delays considered as parameters, it is 

difficult to determine bifurcation values. Here, we present a general 

algorithm for computing Hopf bifurcation solutions suitable for multiple 



F. D. R. LANGA, M. T. A. KARIM, M. S. D. HAGGAR and B. MAMPASSI 

 

2 

delays differential systems. The proposed algorithm is based on an 

approach that consists in using dense curves of n
R  to bring the original 

problem to a simple one-dimensional problem. Some examples, 

illustrating the use of the method, are included. 

1. Introduction 

To obtain a deep and clear understanding of dynamic systems the worthwhile 

way is to investigate delay models. In practice, most of them are described by some 

nonlinear differential systems with delays. In general, it is difficult to analyze the 

stability of such systems due to the existence of multiple delays which leads to 

calculating zeros of multi order transcendental equations [2, 7]. As it has early been 

mentioned, the difficulty of determining bifurcation parameters is then closed to the 

one of searching roots of transcendental equations. Here, we are interested in the 

computation of the Hopf bifurcation points for the following multiple delayed linear 

differential system 

( )∑
=

τ+=

m

i

iti xBAxx

1

,�  (1) 

where ( ) ( ),iit txx τ−=τ  coefficients iτ  are delay parameters that are supposed to 

be positive and, where A and iB  are given matrices. 

It is previously demonstrated in [2, 5, 6] that the stability or the instability of the 

system (1) depends on roots properties of the following characteristic equation 

( ) .0det:

1

=













−−λ=λ ∑

=

λτ−
m

i

i
ieBAIP  (2) 

Even if there is no general results that characterize the equation roots (2), its 

computation still remain a very important research subject. However, an important 

result that establishes condition of existence of the Hopf bifurcation given by Ruan 

and Wei [7], precisely shows that parameters from which the characteristic equation 

(2) admits pure imaginary roots are Hopf bifurcation points, i.e. the parameters which 

provide periodic oscillations solutions. 

There are few papers which discuss the bifurcation of delayed linear systems for 

lower number of delays. We can refer to [1]. The most studied cases are those for 
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which the number of delays is two. When the number of delays is more than two, the 

stability and bifurcation analysis become more and more difficult. In this work we 

present a numerical scheme that, in a more general case, would permit us to compute 

Hopf bifurcation points in an easier way. 

In this paper, we will proceed as follow: in Section 2, we present the numerical 

scheme for computing the Hopf bifurcation parameters for the system (1). Numerical 

simulation examples are given in Section 3, then the conclusion in the last section. 

2. Numerical Scheme 

We investigate here on a new approach for computing bifurcation points. This 

approach is closed to that of the Alienor transformation [4] which has been 

previously used to global optimization of multi variables functions. Firstly, we need 

the following definition. 

Definition 2.1. A subset S of n
R  is said to be α dense in n

R  if for all 

,nM R∈  there exists SN ∈  such that: 

( ) α≤NMd ,  

where ( )NMd ,  denotes the Euclidian distance between M and N. 

We now present the following result proved in [4]. 

Lemma 2.2. The Archimedean curve defined by the following polar equation 

αθ=r  is πα-dense in .2
R  

The generalization of this result to the space d
R  can be easily done by an 

iteration process. Considering variables ,1x  ,2x  3x  in 3
R  we set 

,cos 111 θαθ=x    ,sin 112 θαθ=x    .33 xx =  (3) 

Let connect 1θ  and 3x  by the following: θαθ=θ cos1  and .sin3 θαθ=x  Then, 

we obtain 

( ),coscoscos2
1 θαθθθα=x    ( ),cossincos2

2 θαθθθα=x    .sin3 θαθ=x  (4) 

This last mapping can be easily shown to be πα-dense curve in .3
R  In such a way we 

construct iteratively a απ- dense curve in .d
R  
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To determine Hopf bifurcation points, as mentioned above, we proceed to 

ω=λ i  where i denotes the complex number that satisfies ,12 −=i  and to compute 

the real ω such that ( ) .0=ωiP  Let set ( ) ( )( )ω=ττω iPF m Re...,,, 1  and 

( ) ( )( )ω=ττω iPG m Im...,,, 1  respectively real and imaginary parts of ( ).ωiP  Then 

bifurcation parameters are obtained by solving the system 

( ) 0...,,, 1 =ττω mF  and ( ) .0...,,, 1 =ττω mG  (5) 

Clearly, for some appropriate regular assumptions on functions F and G, there 

exists a point ( )∗∗∗ ττ=τ m...,,1  and a real ( )∗∗∗∗ ττω=ω m...,,1  such that ∗∗ ω=λ i  

is a solution of the equation (2). 

Now, let us show how computing bifurcation points using the α-dense curves 

approach. For a fixed approximated ,0>ε  we let εh  to be a ε-dense curve and we 

set 

( ) ( )( )θω=θω εε hFF ,,  and ( ) ( )( ).,, θω=θω εε hGG  (6) 

Let assume that there exists ∗
εθ  and ( )∗

ε
∗
ε

∗
ε θω=ω  a solution couple of the 

following equations system 

( ) 0, =θωεF  and ( ) .0, =θωεG  (7) 

The point ( ( ))∗
εε

∗
ε θω h,  is obviously a solution of the equations system (6) in 

which ( )∗
εε θh  is a bifurcation point that depends of the parameter ε. Note that 

systems of type (7) are easier to compute than the system (6). In other words, a 

characterization of the space of bifurcation points can be done knowing properties of 

curves .εh  In our forthcoming paper, we will have to study this space and we hope to 

be able to obtain outstanding results as .0→ε  

Then, system (7) gives us an algorithm scheme for computing bifurcation 

parameters of the system (1) that we summarize as follows: 

1. Set ,0>ε  and define εh  thanks to the iterative process given by relations (3) 

and (4); 

2. Define functions F and G by letting ( ) ( )( )ω=ττω iPF m Re...,,, 1  and 

( ) ( )( );Im...,,, 1 ω=ττω iPG m  
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3. Define εF  and εG  thanks for relation (6); 

4. Determine ( )∗
ε

∗
ε θω ,  solution of the system (7); 

5. Set  ( )∗
εε

∗
ε θ=τ h  as a bifurcation point. 

We should note that the step 4 can be done using any existing iterative method. 

For that purpose it is required to define starting values of parameters ω and θ, for the 

resolution of the system (7). 

3. Test Examples 

To illustrate the numerical scheme presented above we have considered two test 

examples. For our numerical computation we have used the Matlab built-in function 

“fsolve” to solve the system (7). 

For both test examples we have chosen as approximation parameter .9.0=ε  As 

initial guess for the Matlab solver, we took the values 10 =ω  and .17.10 =θ  

3.1. First test example 

As our first test example, we consider the following two delays 2
R - system: 

( ) ( ) ( )2211 τ−+τ−+= txBtxBtAxx�  (8) 

with 

,
11

01













−
=A    ,

02

12

1 













−

−
=B    .

02

11

2 













−

−
=B  (9) 

Using the algorithm presented above, we obtain the following bifurcation point: 

,3011.1=ω∗  ,3884.01 =τ∗  .266.02 =τ∗  The corresponding trajectory is plotted in 

Figures 1(a) and 1(b). Considering the bifurcation branch at the direction 1τ  we plot 

trajectories at the stability case (Figures 1(c) and 1(d)) and the instability case 

(Figures 1(e) and 1(f)). 
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(a)                                                             (b) 

          

(c)                                                                     (d) 

 

(e) 

 

(f) 

Figure 1. Representation of the trajectory of the solution for the first test example 

starting at the initial state ( ) ( ).3.1,301.10 =x  For all figures, at the left side, the first 

component of ( )tx  is represented by solid line while the second is represented by 

dashed line. The bifurcation trajectory and its phase portrait are represented in 

Figures (a) and (b). Figures (c) and (d) represent the case of the stability. Figures (e) 

and (f) illustrate the instability case. 

3.2. Second test example 

Here, we consider an example for the case of three delays: 

( ) ( ) ( ) ( )332211 τ−+τ−+τ−+= txBtxBtxBtAxx�  (10) 

with 

,
00

00














=A    ,

31

12

1 













−−

−
=B    ,

21

01

2 













−

−
=B    .

21

11

3 













−

−
=B  
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The computation gives the following bifurcation point ,4774.1=ω∗
 

,3560.01 =τ∗  ,2524.02 =τ∗  .1016.03 =τ∗  

As in the previous test Example 1, we represent the bifurcation solution as well 

as stability and instability solutions by considering the bifurcation branch at 1τ -

direction. 

           

                      (a)                                                         (b) 

           

(c)                                                                (d) 

          

                      (e)                                                             (f) 

Figure 2. Similarly to Figure 1, these curves illustrate the test Example 2. We can 

notice the same conclusions even if the delays are different. 

4. Concluding Remarks 

In this paper, we have presented an efficient algorithm for determining Hopf 

bifurcation points of parametric differential equations. The algorithm is general and 

can be applied successfully to dynamical systems with multiple delays. Moreover, 

this paper shows that algorithm is especially well suited for problems where delays 
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are seen as parameters. As final remark, it should be noted that the approach 

considered in this paper may provide useful properties of the bifurcation space 

geometry. 
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Abstract 

The main function of human cardiovascular system is to maintain 
adequate blood to different regions of the body. This function is based 
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on the interaction of a number of factors including cardiac output, 
partial pressures of carbon dioxide ( )2OC  and oxygen ( ).O2  Blood 

flow through the lungs and tissues is also important for the human 
respiratory system. Oxygen is transported to tissues while carbon 
dioxide is transported away from them. This transport depends on two 
factor: Cardiac output and blood flow. Although the natural state is 
affected during a physical activity, the autoregulation mechanism tries 
to maintain the cardiovascular-respiratory parameters to their natural 
physiological states. 

The purpose of this paper is to propose a bi-compartmental model for 
cardiovascular-respiratory mathematical model including delays. A 
such model allows to determine blood partial pressures according to 
the heart rate system and the alveolar ventilation. Taking delays into 
account, qualitative study of equilibrium allows to determine stability 
and instability regions as well as the existence of limit cycles that are 
characterized by oscillations. 

Performance, against itself and possible accident during the physical 
activity can be explained by this analysis. Then we present the 
numerical simulation results that are based on a generic case. They 
confirm perfectly theoretical results and they show pathological 
situations. 

1. Introduction 

The main role of the cardiovascular system is to maintain blood flow in 
the various regions of the human body. A such blood flow intervenes in 
supplying nutriments to cells and eliminating toxins from the human body. 
To ensure the needed energy during physical activity, a quantity of nutrients 
is used to provide cells oxygen and to get rid of gaseous waste from the 
human body (the carbon dioxide produced during muscle contraction). This 
activity is possible thanks to the interaction between cardiovascular and 
respiratory systems. At the beginning of physical activity, the consumption 
of oxygen ( )2OV  increases according to its intensity to reach a maximum 

level regardless of the increase in the workload. This level corresponds to the 
maximal oxygen uptake ( ),

max2OV  beyond this value, any additional energy 
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will provide acid to the human body. It is known that more a sportsman has 
an important oxygen consumption, the more luck he has to realize a good 
performance. Also, the volume of carbon dioxide ( )2COV  rejected by the 

body during a physical activity increases proportionally with the intensity of 
the effort. The exchange of the oxygen and the carbon dioxide is results in 
the ventilation which is based on the breath in the lungs by diffusion 
(exchange mechanism between the air contained in alveolar and blood cells 
inside the blood capillaries). The alveolar ventilation is one of important 
parameters when this exchange takes place. It is the same for the blood 
pressures through arteries and veins that assure the transport of gases. 

Since the 1950s, a great number of mathematical models of the 
cardiovascular and respiratory system have been proposed. We can refer, for 
example to [5, 7]. Many of these models are derived from the compartmental 
analysis [8-10]. Among of them belong to the class of optimal control 
problems governed by nonlinear differential equations. Those models allow 
especially autoregulation mechanism which is complex. They also allow to 
integrate the study of the control system during the transition between two 
stable states such as rest and physical activity [17], rest and slow sleep [1]. 
Considering interactions between cardiovascular and respiratory systems a 
such combination is necessary. 

In this paper, we consider the global human cardiovascular and 
respiratory system during physical activity. To explain his/her performance 
and possible accidents during an intense physical activity, we introduce the 
notion of delay in a global two compartments model. This model was 
introduced in [13] to determine an optimal control system for healthy person 
during a given physical activity. We discuss the existence of asymptotic 
states and those presenting oscillation phenomena. It is exactly oscillatory 
states that can allow bad performance and even cardiovascular accidents. 

This paper is organized as follows. In the second section we focus on the 
presentation of a bi-compartmental cardiovascular-respiratory model with 
delays. In the third section the fundamental results will be proved and the 
fourth section presents numerical simulation that illustrates the theoretical 
results. The last section is interested in the appendix. 
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2. The Model 

It is known that the notion of delay approaches has been included in the 
respiratory equations [3] and it has been applied to study the transition 
between rest state and slow-wave sleep for healthy people and those that 
present a congestive cardiac problem. The steady states were calculated by 
Mancia [11], Somers et al. [16]. They gave an example to determine the 
steady state that is compatible with the observations of healthy people and 
data collection for people who present heart diseases. 

The delays occur in cardiovascular respiratory system when the blood 
transfer blood gases from the lungs to the tissue and return from tissue to 
lungs thanks to pressure [2]. Dynamical simulations show that the delay 
between tissue and lung compartments does not contribute to instability. This 
result is the same for different values of delays, even for important delays. 
The mathematical model we derive in this paper is based on the works of 
Grodin et al. [5], Kappel et al. [8], Khoo et al. [10]. It uses an optimal control 
approach to present the complex features of the control of the cardiovascular 
component. The respiratory control has been considered as an optimal 
control. 

It is well known [13] that the systemic arterial pressure ( )asP  and the 

systemic venous pressure ( )vsP  are important parameters during a physical 

activity. The other parameters can indirectly influence the system through the 
control of the heart rate (H) and the alveolar ventilation ( ).AV  In fact, the 

blood flow in the arteries results in the heart beat action while the control of 
the respiratory system acts through the alveolar ventilation. This is exactly 
the process that supplies cells and tissues with the needed oxygen for the 
metabolism and it gets ride them the carbon dioxide to realize good 
performance during physical activity. The respiratory control system changes 
the alveolar ventilation in response to the quantity of carbon dioxide 2CO  

and oxygen 2O  gases through the breath. Consequently, the alveolar 

ventilation and cardiac output influence mutually. It is then obvious that 
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exchanges between the systemic arterial compartment and systemic venous 
compartment are controlled by heart rate (H) and alveolar ventilation ( )AV  

functions. The mechanism of this control is not direct and can be represented 
by outflow functions between systemic arterial and systemic venous 
compartments that depend on heart rate alveolar ventilation. Transport delays 
appear as it takes time for tissue blood through systemic venous and arterial 
compartments to reach the lungs and vice versa [2]. 

Taking delay into account, we propose as in [13], a bi-compartmental 
model for determining blood partial pressures as functions of heart rate and 
alveolar ventilation. For this purpose, we assume that exchanges between 
systemic arterial and venous compartments are directly regulated by systemic 
arterial and systemic venous delays asτ  and vsτ  and indirectly by heart rate 

H and alveolar ventilation AV  (see Fig. 1). 

Using compartmental analysis the model equation can be formulated as 
follows [13]: 

( ) ( ) ( ( )) ( ( ) ( ) ),, Avsvsas
as tVtHftPtP
dt

tdP
×τ−+−= α  (1) 

( ) ( ) ( ( )) ( ( ) ( ) ),, Aasasvs
vs tVtHgtPtP
dt

tdP
×τ−+−= β  (2) 

where coefficients α and β are constants of the model and f and g are 
sufficiently regular positive functions. Taking physiological theories into 
account, autoregulation function allows to maintain main parameters of 
cardiovascular and respiratory system around their critical values which 
depend on the type of physical activity. Those kind of values can also depend 
on the state of human body for example rest or sleep. 

Let ee
vs

e
as HPP ,,  and e

AV  denote respectively the equilibrium parameters 

of systemic arterial pressure, systemic venous pressure, heart rate and 
alveolar ventilation. The equilibrium of the system (1)-(2) is as follows 

( )

( )⎪⎩

⎪
⎨
⎧

=+−

=+−
β

α

,0

,0

2

1
ee

as
e

vs

ee
vs

e
as

UPP

UPP
 (3) 
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where set ( ) ( ).,,, 21
e
A

eee
A

ee VHgUVHfU ==  We have therefore the 

following result. 

 

Figure 1. A diagram of a delay bi-compartmental model of the human 
cardiovascular and respiratory system [13]. f and g are functions depending 
on heart rate (H) and alveolar ventilation ( ) asAV τ,  and vsτ  respectively are 

systemic arterial and systemic venous delays. State variables are: systemic 
arterial pressure ( )asP  and systemic venous pressure ( ).vsP  

Proposition 2.1. There exists a unique nontrivial steady state if and only 

if .1≠αβ  Moreover, the steady state ( )e
vs

e
as

e PPX ,=  satisfies the following 

system 

( ) ( )

( ) ( )⎪⎩

⎪
⎨
⎧

=

=

αβ−αβ−

αβ−αβ−
β

.1
1

21
1

1

,
1

1
211

eee
as

eee
vs

UUP

UUP
 (4) 

□ 
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Remark 2.1. Relation (4) shows that it is possible to determine in unique 
way the parameters α and β if the functions f and g and the equilibrium states 
are known. However, those parameters as well as the functions f and g can be 
determined from the data assimilation by taking into account autoregulation 
mechanism (see, for example, [13]). □ 

3. Asymptotic and Oscillatory States 

Setting ( ) ( )vsvs tPtP vs τ−=τ  and ( ) ( ),asas tPtP as τ−=τ  the system 

(1)-(2) becomes 

( ) ,1UPP
dt

dP
vsas

as ×+−= α
τ  (5) 

( ) ,2UPPdt
dP

asvs
vs ×+−= β

τ  (6) 

where  

( ) ( ( ) ( ))tVtHftU A,1 =   and  ( ) ( ( ) ( )).,2 tVtHftU A=  

Hence by linearizing the second member of the system (5)-(6) around the 
point 

( ) ( ),,,,,,,,,,, 2121
eeeee

vs
e
asvsas UUPPPPUUPPPP

vsasvsas ττττ =  

we obtain from the first order the following system 

( ) ( ) ( ) ( ) ( )tDUtXAtXAtXAtX vsas +τ−+τ−+= 321  (7) 

where we have set ( ) ( ( ) ( ) ) ,, Te
vsvs

e
asas PtPPtPtX −−=  

( ) ⎥
⎦

⎤
⎢
⎣

⎡

β
=⎥

⎦

⎤
⎢
⎣

⎡

−

−
= −β 0

00
,

10

01

2
121 ee

as UP
AA  

( ) ( )

( )
.

0

0
,
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0 1
1

3
⎥
⎥
⎦
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⎢
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⎡
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⎥
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It is known that stability study of solutions for the input-state system (7) 
requires the stability of associated system without input [14]. Therefore we 
have the following equation 

( ) ( ) ( ) ( ).321 vsas tXAtXAtXAtX τ−+τ−+=  (8) 

From (8) the characteristic equation can be formulated as follows 

,0321 =λ−++ λτ−λτ− IeAeAA vsas  (9) 

where λ denotes eigenvalue. After calculations, we obtain 

( ) .0122 =αβ−+λ+λ τ+τλ− vsase  (10) 

The properties of the roots for equation (10) allow us to determine the 

stability of the system (5)-(6). In particular, the steady state ( )e
vs

e
as PP ,  is 

locally asymptotically stable if and only if all the roots of the characteristic 
equation (10) of the system without input (8) present negative real parts. 
Thereafter, the study of the properties of roots for equation (10) will be 
conducted by using two cases which depend on the values of delays. Those 
values can be zero or not. 

First case. 0=τ=τ vsas  

The characteristic equation (10) can be rewritten as follows 

.0122 =αβ−+λ+λ  (11) 

This equation has exactly two following real roots: 

.1;1 21 αβ−−=λαβ+−=λ  (12) 

Therefore we have the following result. 

Proposition 3.1. If ,0=τ=τ vsas  then the steady state ( )e
vs

e
as PP ,  is 

asymptotically stable if and only if 

1<αβ  (13) 
□ 
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From condition (13), we can note that if ,10 <αβ≤  then the roots 

defined in (12) are real and negative. If ,0<αβ  then these roots are complex 

with ( ) ( ) .121 −=λ=λ ee RR  Thus, condition (13) naturally ensures the 

existence of the asymptotic state for any positive initial condition. If ,1≥αβ  

then these two roots are real and one of them is strictly positive. This last 
condition ensures that the steady state is unstable. □ 

Second case. 0≠τas  and 0≠τvs  

Let us take ,vsas τ+τ=τ  the characteristic (10) equation becomes 

.0122 =αβ−+λ+λ λτ−e  (14) 

This is a transcendental equation from which the set of roots can be 
characterized as infinite cardinal [15]. Of course the set of roots depends on 
the parameter τ. Here the determination of parameters which ensure stability 
may be very delicate. It would be useful to explore the study of the existence 
of Hopf bifurcations. The Hopf bifurcation is manifested by the appearance 
of limit cycles which provide oscillatory solutions to the system at 
macroscopic level. Let us start by looking for imaginary roots of equation 
(14). This leads to determination of R∈ω  such that ωi  is a root. One can 
note that if ωi  is a root of (14), then ω−i  is its root too. Therefore we can 

assume that .0>ω  Replacing ωi  in (14) we have to find 0>ω  as solution 
of the following equation 

( ) tiei ω−αβ=ω+ 21  (15) 

from equation (15) we can deduct 

( ) αβ=ω+ 21 i  (16) 

hence 

   ( ) ( ) .1 222 αβ=+ω  (17) 

It is clear that, this equation admits a solution if and only if .1>αβ  

Therefore we have the following result. 
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Proposition 3.2. Equation (14) admits imaginary roots if and only if 

.1>αβ  (18) 

Moreover, under condition (18), there is a unique pair of conjugate 

imaginary roots: .1−αβ± i  □ 

Now let us assume that conditions of Proposition 3.2 yield. Then 
equation (15) leads to determination of delays τ whose pair of roots ω± i  
exists. From equation (15) it follows 

ωτ=
αβ
ω− cos1 2

 (19) 

ωτ−=
αβ
ω sin2  (20) 

from equations (19)-(20) it yields 

( ) .
1

2tan 2 −ω
ω=ωτ  (21) 

Hence, the set of delays whereby all roots of equation (15) are pure 
imaginary, is given as follows 

.,0,1,
1

2arctan1
2 ⎭

⎬
⎫

⎩
⎨
⎧ =−αβ−=ω⎟

⎠
⎞

⎜
⎝
⎛ π+

−ω
ω

ω
=τ kkk  (22) 

Furthermore, thanks to equation (14), it is easy to establish the application 

which associates +
∗∈τ R  to ( )( ),τλeR  where ( )τλ  is a regular solution of 

(14). Therefore, we have the following result. 

Proposition 3.3. Under condition (18) if ,0τ=τ  then 1−αβ±i  is a 

simple pair of pure imaginary roots for equation (14). 

In addition, we have 

( ) .0
0

>
τ
λ

τ=τd
dRe  
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Proof. For any root ( )τλ  of equation (14), let us take ( ) ( )τ=τλ p  

( ).τ+ iq  It is easy to see that ( ) 00 =τp  and ( ) ,0 ω=τq  where ω is defined 

in (22). Differentiating equation (14) with respect to τ, we obtain 

( ) ( ) .022 =αβλ+
τ
λταβ++λ λτ−λτ− ed

de  (23) 

Let us assume that ( )0τλ  is not a simple root. Then, we have .0
0
=

τ
λ

τd
d  

From (23) we obtain 

( ) ,000 =ωαβ τ⋅τλ−ei  hence ( ) .000 =αβ τ⋅τλ−e  

This is not possible since .0≠αβ  So ω± i  is a simple root. 

In addition equation (23) allows us to deduct 

λτ−

λτ−

ταβ++λ
λαβ−=

τ
λ

e
e

d
d

22
 

and from equation (14) it follows that 

( )
( ) .12

1
+λτ+
+λλ−=

τ
λ

d
d  

Then, after calculations we obtain 

( )
( ) ( )

.0
2

2
2

0
2

0

2

0

>
ωτ+τ+

ω=
τ
λ

τ=τd
dRe  

Finally, we have the following main result. □ 

Theorem 3.1. 

1. If ,1<αβ  then the system (1)-(2) admits a asymptotically stable 

steady state for all τ. 

2. If ,1−<αβ  then the system (1)-(2) admits 

(a) a locally asymptotically stable steady state for ] [,,0 0τ∈τ  
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(b) an unstable steady state for ,0τ>τ  

(c) a periodic solution of pulse ω, for .0τ=τ  

Proof. Let us consider the following function 

( ) ( ) λτ−αβ−+λ+λ=τλΘ→τλ e12,, 2  (24) 

and the following sets 

( ){ }0Re, <λ∈λ= CB  

( ){ }.0Re, =λ∈λ=∂ CB  
It is easy to see that 

• Θ is continuous on RC ×  

• ( )τλΘ→λ ,  is analytic for all τ. 

We have to prove this theorem in three steps. 

First step. Case 1<αβ  

From (11) and (12), ( )0,λΘ  admits no zeros on B∂  and admits exactly 

two roots in B. Thanks to the Rouché’s theorem (see Appendix A) it follows 
that ( )τλΘ ,  admits no zeros in B∂  and has exactly two roots in B for all τ in 

a neighborhood of zero. 

In addition, since ( )0,λΘ  has no zeros in ,\BC  the Rouché’s theorem 

states that ( )τλΘ ,  has no zeros in B\C  for all τ in a neighborhood of zero. 

Therefore, there exists a real 00 >a  such that for all [ ]0,0 a∈τ  the system 

(1)-(2) is asymptotically stable. 

Second step. Case 1<αβ  

By virtue of Proposition 3.2, ( )τλΘ ,  has no zeros on B∂  for all ,0≥τ  

in particular for .a=τ∗  It follows from the first step that ( )∗τλΘ ,  has no 

zeros on B∂  and has exactly two roots in B. Hence, there exists a real 
∗τ>1a  such that for every [ ]., 10 aa∈τ  The system (1)-(2) is asymptotically 
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stable. This process can be indefinitely repeated. Hence we construct a 
sequence ( )na  such that for all [ ],,1 nn aa −∈τ  the function ( )τλΘ ,  has no 

zeros on B∂  and it admits two roots in B. By construction the sequence ( )na  

increases and it tends to infinity. Consequently we deduct that the system 
(1)-(2) is asymptotically stable for all .0≥τ  This proves the first statement 
of Theorem 3.1. 

Third step. Case 1−<αβ  

There exists a real 0τ  given by formula (22) such that ( )τλΘ ,  admits 

two pure imaginary roots for 0τ=τ  and it does not admit imaginary roots 

for .0τ<τ  From the first step, ( )τλΘ ,  admits no zeros on B∂  and it has 

exactly two roots in B for .0τ<τ  Then the system (1)-(2) is asymptotically 

stable for ] [.,0 0τ∈τ  

For ,0τ=τ  conditions given by Proposition 3.3 yield. Hence the 

equation (14) has a pair of simple roots ω±=λ i  and it satisfies 
( ) .0

0

>
τ
λ

τ=τd
dRe  By applying the Hopf bifurcation theorem (see Appendix 

B), there exists an oscillatory solution with the period 
ω
π= 2T  for 0τ=τ  

and unstable solutions for .0τ>τ  □ 

4. Computational Experiments 

To illustrate theoretical results presented in Section 3 we consider the 
physiological parameters of a healthy woman who is 30 years old, whose 
physical activity can be considered from rest state to fast running called 
transitional phase. The choice is based on the fact that one of aerobics 
exercises is running and it is well known that aerobics exercise is the proper 
physical activity form for 30-40 year old women for the development of 
cardiovascular system capacity [18]. The optimal values of parameters are 
given in the Table 1. 
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For our simulation we considered the functions f and g defined in [13]: 

( ) ( )2846.03820.0 7518.05472.0exp, HVVHf AA +≈  (25) 

( ) ( ).7440.1exp, 0985.0 −≈ −HVVHg AA  (26) 

Table 1. Optimal values of the parameter for a 30 years old woman in her 
transition phase 

Parameters Rest Fast running 

AV  6 25 

H 70 180 

asP  104 170 

vsP  3.566 3.23 

According to Table 1, initial values of systemic arterial and venous 
pressures are respectively given by: 

1040 =asP  and .566.30 =vsP  (27) 

The equilibrium conditions of the input parameters, heart rate and alveolar 
ventilation, are as follows: 

180=He  and .25=AeV  (28) 

For the calculation of solutions, we have distinguished two cases: the 
existence of delays and their absence. Note that for all numerical examples 
the initial values of the system, and, the input parameters are fix. 

4.1. First case. 0=τ=τ vsas  

Using the state equation (4), we have the parameters of the model: 

0267.0−=α  and .1756.0−=β  (29) 

The corresponding solutions are illustrated in Fig. 2. 
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Figure 2 illustrates the input parameters and the responses of the system 
(1)-(2) without the transport delays for .1<αβ  By taking thee initial value 

which is 70 beats/min (resp. 6 l/min), the Fig. 2(a) (resp. 2(b)) shows that the 
heart rate (resp. alveolar ventilation) reaches the equilibrium value (180 
beats/min for heart rate and 25 L/min for alveolar ventilation) after two (resp. 
three) minutes at the beginning of physical activity and stabilizes itself. 

The responses of the system shown in Fig. 2(c) and Fig. 2(d) concern the 
systemic arterial pressure and systemic venous pressure. The systemic 
arterial pressure starts at rest value at 104 mmHg and reaches 179 mmHg in 
five minutes max, while the venous pressure has 3,566 mmHg as initial value 
and decreases to 3.24 mmHg after 6.5 minutes, before stabilizing itself on 
3.23 mmHg after 7 minutes. 

These simulation results justify the theoretical ones according to 
Proposition 3.1, because the curves of systemic arterial and systemic venous 
pressures converge asymptotically to their equilibrium value. This situation 
is considered as ideal since all system parameters evolve asymptotically to 
performance optimal values. 

4.2. Second case. 0,0 ≠τ≠τ vsas  and 1<αβ  

It should be noticed that for given values α and β, the equilibrium 
pressure values are determined by formula (4). We present here some 
examples of simulation corresponding to the condition .1<αβ  

Note that if ,1<αβ  then the system is asymptotically stable for any 

delay value (see Theorem 3.1). But the system can be converge 
asymptotically to the physiological healthy or pathological values. As 
example, let us consider the parameters presented in Table 2. 
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Figure 2. Case 0=τ=τ vsas  and .1<αβ  Figures (a) and (b) represent 

input parameters (heart rate and alveolar ventilation) while figures (c) and (d) 
illustrate the response of the system (systemic arterial and venous pressure). 

Table 2. Various values of parameters used for simulation solutions where 
we assumed that 0,0 ≠τ≠τ vsas  and 1<αβ  

Example 1 0267.0−=α  and 1756.0−=β 170=e
asP  and 23.3=e

vsP  

Example 2  60.0−=α  and 10.0−=β  65=e
asP  and 23.5=e

vsP  

Example 3 0001.0−=α  and 008.0−=β 175=e
asP  and 6.7=e

vsP  

The corresponding graphs to Examples 1, 2 and 3 are respectively plotted 
in Figs. 3 and 4 for the same input parameters (heart rate and alveolar 
ventilation). For all these examples we consider the same delay values. 

Figure 3 clarifies the theoretical results given by Theorem 3.1 where the 
stability condition is .1<αβ  These figures show that the curves of 
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systemic arterial and systemic venous pressures converge asymptotically at 
equilibrium values. By taking the same values of α and β as in the first case, 
the Fig. 3(c) (resp. 3(d)) shows that systemic arterial (resp. systemic venous) 
pressure decreases (resp. increases) slightly. 

When we consider the case where the values of α and β are different, 
that is 60.0−=α  and ,10.0−=β  we find that the curves of systemic arterial 

pressure (Fig. 3(e)) and systemic venous (Fig. 3(f)) are asymptotically stable 
around the unwanted steady values (pathological values). This type of 
variation can cause cardiovascular type extreme vasodilation (vasoplegia). 

In the case where 0001.0−=α  and ,008.0−=β  the respective curves of 

systemic arterial pressure and systemic venous converge asymptotically at 
the pathological steady values (Figs. 3(g), 3(h)). 

This disease is due to an increase of extreme value for the systemic 
venous pressure during physical activity up to 5.23 mmHg for Fig. 3. 
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Figure 3. Case 1<αβ  with delay .198.0=τ=τ vsas  
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Figure 4. Case 1<αβ  with the pair of delays ( ) ( ).012.0,031.0, =ττ vsas  
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4.3. Third case. 1−<αβ  and 0≠τas  and 0≠τvs  

In this case, Theorem 3.1 allows us to conclude that there exists a value 

0τ  given by relation (22) such that we have stability for ,0τ<τ  existence of 

oscillatory solutions for 0τ=τ  and instability for .0τ>τ  

For numerical simulation we consider the following values 

5.3=α  and 6.0−=β  (30) 

from which we obtain ,4523.10 =τ  and the corresponding steady pressures 

mmHg40=e
asP   and  .mmHg7.0=e

vsP  (31) 

The solutions that correspond to different delay values are then shown in 
Fig. 5. 

In accordance with the stability condition 1−<αβ  of Theorem 3.1 

( ),0τ<τ  we see that response curves shown in Fig. 5(c) and Fig. 5(d) 

converge asymptotically to values that are considered for physiological 
pathology. 

According to the conditions of Theorem 3.1 ( ),0τ=τ  the curves of 

systemic arterial and systemic venous pressures oscillate with a large 
amplitude at the period ,3264.4=T  such oscillations lead inevitably to 
serious accidents (sudden death for instance). 

Similarly, in agreement with Theorem 3.1 ( ),0τ>τ  the curves 

representing the systemic arterial and systemic venous pressures are unstable. 
This instability leads to the same consequences as in the oscillatory case. 



Asymptotic States of the Cardiovascular and Respiratory System … 143 

 
Figure 5. Case 1−<αβ  with the critical value of delay .4523.10 =τ  
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5. Concluding Remarks 

In bulk, we have introduced the delays to explain the existence or not of 
performance cases (choice α and β) for a person during physical activity. As 
result, we can have performance for some persons while others have 
cardiovascular risks or sudden death. On one hand the numerical simulation 
results show the small values of pressures that can lead to serious accidents 
of cardiovascular-respiratory system, and on the other hand they illustrate the 
oscillatory cases between great and small values of pressures. The last case is 
not realizable and it can be explained as sudden death. Our study can be used 
to identify the values of α and β and predict whether the person can perform 
or if there is high risk of accidents of cardiovascular-respiratory system for 
him/her. 

6. Appendix 

6.1. Appendix A. Rouché’s theorem 

Rouche’s theorem concerns the location of zeros of functions. The 
statement of this theorem is given below. 

Theorem 6.1. Let A be an open set in ,C  F be a metric space, f be a 

continuous complex valued function in ,FA ×  such that for each ,F∈α  

( )α→ ,zfz  is analytic in A. Let B be an open subset of A, whose closure 

B  in C  is compact and contained in A, and let F∈α0  be such that no 

zero of ( )0, αzf  is on the frontier B. Then there exists a neighborhood W of 

0α  in F such that: 

• for any ( )α∈α ,, zfW  has no zeros on the frontier of B, 

• for any ,W∈α  the sum of the orders of the zeros of ( )α,zf  

belonging to B is independent of α. 

For the proof of this theorem refer to [4] and [12]. 
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Rouché’s theorem, called also continuity theorem of zeros of differential 
equations of a parametric function can be used for the study of delay systems 

by taking C=A  and .nF R=  This theorem shows that the number of zeros 
with negative real parts and positive real parts remain the same if the 
parameter varies until a zero will appear in the pure imaginary axis. 

6.2. Appendix B. Existence of periodic solutions 

Concerning the existence of periodic solutions, we will be interested in 
consider a family of delay differential equations 

( ),, txF
dt
dx

α=  (32) 

where ( )ϕα,F  admits continuous derivatives of first and second order with 

respect to R∈α  and .C∈ϕ  Let us assume that ( ) 00, =αF  for all R∈α  

and let us take 

( ) ( ) .0, XFXL ⋅
ϕ∂
α∂

=α  (33) 

We make the following assumptions: 

• :1H  the linear equation (33) has a pair of eigenvalue 00 ω±=λ i  

• :2H  ( )( ) ;00 ≠λ′eR  where ( )αλ  is a simple eigenvalue of ( )αL  for 

,0α<α  00 >α  0(α  exists because ( )αL  is of class .)1C  

The following theorem known as the theorem of Hopf bifurcation establishes 
the existence of periodic solutions. 

Theorem 6.2. Suppose that ( )ϕα,F  has continuous derivatives in 

R∈α  and ( ) 00,, =α∈ϕ FC  for all ,R∈α  and assumptions ( )1H  and 

( )2H  are verified. Then there exists ,0, 00 >αt  functions ( ) ,R∈α t  

( ) ,R∈ω t  all functions are of class 1C  for ,0tt <  such that equation (32) 

has a solution ( )tω -periodic of class 1C  for 0tt <  for 00 α<α  denoted 
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by ( ).tx∗  In particular, when ,0=α  equation (32) has a periodic solution 

of period .2
ω
π  

The proof of Theorem 6.2 can be found in [6]. 

The assumption ( )2H  is called the assumption of transversality. It 

means that there is an eigenvalue with zero real part, the branch of 
eigenvalue appears through the pure imaginary axis. 

Under the transversality and assumption ( ),1H  equation (32) has a 

periodic solution when 0=α  and the periodic solutions persist at least for 
values of 0>α  close to zero. 
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