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Résumé

Un grand nombre des systemes dynamiques est gouverné par des parametres
dont les descriptions sont complexes. Dans la plupart des cas, ces parametres sont
pratiquement difficiles a identifier. Pourtant, il est bien connu que de leur description
en dépend le niveau de compréhension que I’on peut avoir sur les différents processus
d’un systeme dynamique.

Diverses études révélent que le parametre retard est celui qui peut permettre
de comprendre le mieux les comportements asymptotiques au voisinage d’états pri-
vilégiés des systemes dynamiques. Notre travail de these s’incrit dans 'optique de
la détermination des parametres a retards spécifiques pour lesquels toute pertur-
bation infinitésimale entraine un changement qualitatif sur le comportement global
du systeme. A cet effet, nous étudions des systemes dynamiques gouvernés par des
équations différentielles a multi - retards. Et a 'aide de la théorie des bifurcations de
Hopf, nous proposons un schéma numérique permettant de calculer des parametres
retards critiques décrivant la dynamique transitoire des états asymptotiquement
stables vers ceux qui sont instables.

La théorie des bifurcations de Hopf est largement développée dans la littérature.
Dans beaucoup de situations, I'’ensemble des points de bifurcation de Hopf est
completement caractérisé. Cependant, lorsque les parametres considérés sont des
retards, les points de bifurcation de Hopf ainsi que leurs directions de bifurcation
sont difficiles & déterminer. Bien qu’il existe quelques résultats ”satisfaisants” pour

des systemes différentiels & un ou a deux retards scalaires, le probleme de la ca-
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ractérisation des points de bifurcation de Hopf reste encore un champ ouvert pour
des systemes a retards multiples.

Au vu de ces difficultés, nous développons donc dans cette these une approche
basée sur la théorie des courbes denses. Précisément, I'idée fondamentale est de
construire une courbe remplissant, au sens de la densité, I'espace des parametres
a retards et ainsi de pouvoir se ramener a un probleme a d’un seul parametre.
Grace a ce procédé nous formulons un schéma algorithmique permettant de générer
des points de bifurcation de Hopf. Nous appliquons cette étude a un probleme de
controle thérapeutique du VIH/ SIDA. Nous formulons ce probléeme par un systéme
différentiel entrée - état avec quatre parametres retards portant sur la réponse de
certains déterminants de la dynamique de la maladie. La simulation numérique des
scénarios thérapeutiques est menée a partir du schéma numérique que nous avons
développé dans cette these. Des résultats obtenus sont satisfaisants quant a 1'in-

terprétation des phases transitoires de la maladie en présence ou sans traitement.

En somme, 'approche développée dans cette these ouvre une voie vers une ca-
ractérisation complete des points de bifurcation de Hopf pour des systemes a multi

- retards.

Mots clés : Systemes dynamiques multi - retards; Bifurcation de Hopf; Etats

oscillatoires ; Dynamique transitoire en épidémiologie.




Notations

Ensembles et nombres

— R : ensemble des nombres réels.

— R, : ensemble des nombres réels positifs ou nuls.

— C : ensemble des nombres complxes.

— R" : espace vectoriel de dimension n construit sur un corps des réels.
la, b] : intervalle fermé de R d’extrémités a et b.

la, b : intervalle ouvert de R d’extrémités a et b.

[a, b ou [a, b) : intervalle semi - ouvert de R d’extrémités a et b.
[

1

,...,n] : entiers naturels de 1 a n.

— C(I, R™) ou bien C : ensemble des fonctions continues sur I a valeurs dans R".

— C, : ensemble des fonctions continues bornées par une constante réelle a > 0.

— K : ensemble des fonctions continues de [0, a) — [0, 00) strictement croissantes
et nulle en zéro.

— K : ensemble des fonctions de [0, co) — [0, oo) de classe K tendant vers
I'infini.

— K, : une fonction 5 : [0, a) x [0, oo) est dite de classe K. si, pour s fixé,
la fonction fS(r,.) est décroissante par rapport a la deuxieme variable avec

B(r, s) = 0 quand s — 0.

— t € R, : variable temporelle.

dx
- T = m . dérivée de la variable x par rapport au temps.
- i= % : seconde dérivée de x par rapport au temps.
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Vecteurs et fonctions

— 27 : transposé du vecteur z.

— x € R" : vecteur de composantes x;.

x(t, to, wo) € R : vecteur de R™ représentant ’état d’un systeme a l'instant

t ayant pour état ¢y € C a l'instant initiale .

— x; : fonction de classe C définie par x(0) = z(t +0),V 6 € [-7, 0] ou 7 > 0
est donné.

— || : valeur absolue d’un nombre réel ou module d’un nombre complexe.

— ||| : norme sur R™.

— |llle : norme sur C définie par Vo € C : ||p]lc = sup |¢(0)].

oe[—, 0]

Matrices

— AT : transposée de la matrice A.
— A > 0 (respectivement A < 0) : A définie positive (respectivement définie

négative).

[ Au]

— ||A|| : norme euclidienne de la matrice A : ||A]| = T
weR", u0 lul

— I, : matrice identité d’ordre n.
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Chapitre 1

Introduction générale

Un constat peut étre fait que, durant ces dernieres années, la part de la modélisa-
tion mathématique en épidémiologie n’a jamais céssée d’augmenter. Les travaux les
plus récents sur 1’épidémiologie présentent des modeles mathématiques décrits a
I’aide des systemes dynamiques multi - retards. L’étude des systemes a retard est
depuis fort longtemps un sujet de grande préoccupation. Cela résulte du fait que
la présence de retards est fréquemment constatée en pratique et peut affecter les
performances des systemes de facon tres importante. Ne pas en tenir compte peut
fausser considérablement ’analyse des phénomenes étudiés. Depuis quelques années,
de nombreux résultats d’analyse de stabilité ou de stabilisation pour des systemes
non linéaires a retard ont été obtenus. Cependant, en raison des difficultés inhérentes
a ces problemes, beaucoup reste encore a faire.

D’une maniere générale, les retards sont conséquences du temps de réaction des
systemes en réponse a des actions pouvant influencer leur évolution. Leur introduc-
tion dans des modeles entraine 'apparition de fluctuations avec des phases d’ex-
plosion, latentes ou d’extinction. On peut grossierement situer les équations a re-
tard comme étant a mi-chemin entre les équations différentielles ordinaires et les
équations aux dérivées partielles. La différence avec les équations différentielles or-

dinaires est que les données initiales sont elles mémes des fonctions. Ceci nécessite



1.1. Apercu historique

une étude mathématique plus élaborée par rapport aux équations différentielles or-
dinaires.

Cette these s’intéresse a une étude quantitative et qualitative des équations
différentielles a retard en dimension finie ou infinie. Ces équations peuvent étre
représentées par des équations différentielles non locales en temps : la connaissance
de la solution a un instant donné nécessite sa connaissance sur un intervalle de
temps dont la longueur est égale au retard. De facon spécifique, ce travail s’intéresse
aux aspects de stabilité, de comportement asymptotique, d’attractivité des solu-
tions bornées et périodiques. La théorie des bifurcations est abordée pour élucider
les changements qualitatifs de ces propriétés en fonctions des parametres de re-
tard. Particulierement, dans le cadre des systemes épidémiologiques, cette théorie
permettrait de déterminer des solutions périodiques, quasi-périodiques, oscillatoires
ou chaotiques. De méme, au sein des systemes physiologiques, le chaos procurerait
une flexibilité de réponse accrue a différentes situations. Ainsi le rythme cardiaque
normal serait chaotique, ce qui permettrait au coeur de réagir efficacement a tout

effort.

1.1 Apercu historique

L’épidémiologie est I’étude de la propagation de maladies chez I’homme et des fac-
teurs qui les influencent. Elle vise a la compréhension des causes, et a I’amélioration
de traitements et des moyens de prévention. L’apport des mathématiques se fait alors
dans un premier temps par le biais de la modélisation et ensuite par 'identification
des parametres.

L’approche mathématique a été depuis fort longtemps utilisée pour modéliser la
dynamique des épidémiologies en s’appuyant sur les équations différentielles et les
systemes des équations aux dérivées partielles. L'un des premiers modeles connus a

été développé par Bernoulli en 1760 dans le cadre de I'épidémiologie de la variole




1.1. Apercu historique

[56]. Les fondements de I’approche de ’épidémiologie basée sur les modeles compar-
timentaux ont été établis par des médecins de santé publique comme Sir Ronald
Ross, W. H. Hamer, W. O. Kermack et autres [37, 41, 60].

Ronald Ross peut étre considéré comme le pere fondateur de 1’épidémiologie
actuelle. Il lui a été attribué un prix Nobel en 1902 pour sa preuve que le paludisme
était transmis par les anopheles. C’est lui, en 1911, qui a publié le premier modele
dynamique de la transmission du paludisme. Il a prouvé qu’en dessous d’un certain
seuil de la population des moustiques le paludisme disparaissait.

La modélisation mathématique des maladies infectieuses est une science relati-
vement nouvelle. Bien que 'épidémiologie ait une longue histoire, c¢’est récemment
que les mathématiciens, les épidémiologistes, les immunologistes ont commencé a
collaborer pour créer des modeles susceptibles de prédire I’évolution des maladies.

Dans cette these, nous analysons certains modeles épidémiologiques comportant
des retards. Les retards jouent en effet un role important en biologie, plus parti-
culierement en épidémiologie. Par exemple, dans le cas d’une maladie infectieuse, le
temps d’incubation, c’est - a - dire le temps entre le moment ou I'individu est infecté
et le temps ou il transmet cette maladie, joue un role important dans I'analyse de
la transmission.

L’étude des systemes a retards a été I’'objet de nombreux travaux en épidémiologie
durant ces dernieres décennies. Méme si I’étude des systemes a retards date de pres
d’un siecle, ce domaine reste toujours 1'objet d’une recherche tres active, comme
le montrent plusieurs monographies qui lui ont été consacrées. Les livres de Driver
(1977) [19] et de Pinney (1958) [57] contiennent de nombreux exemples d’équations
différentielles a retard (d'EDRs) qui sont apparus dans la litterature jusqu’aux
années soixante. Un grand nombre des références récentes, parmi lesquelles celles
de Stépan (1989) [65], Fowler (1997) [27], Epstein et Pojman (1998) [22], Murray
(2002) [49], Fall et al (2002) [25] et Beuter et al. (2003) [7] ont exploré différentes

EDRs en mécanique, en chimie et en biologie. Toutes ces études montrent qu'un
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retard peut conduire a des instabilités oscillantes.

Enfin, les EDRs soulevent d’importantes questions d’ordre mathématiques. On peut
se référer notamment a Hale et Verduyn Lunel (1993) [32] et a Diekmann et al.
(1995) [16]. Parmis les articles de synthese, on peut également citer Gopalsamy
(1992) [29] et Leping Sun (2005) [39]. Les systemes a retards sont présents dans
des domaines tres variés et la compréhension des processus qui régissent leur dy-
namique constitue une motivation fondamentale de recherche. Pour la plupart des
systemes physiques, il a été généralement admis que le comportement du proces-
sus ne dépend que de l'état actuel. Bien que ce dernier ait été établi pour une
large classe de phénomenes physiques, de nombreux autres processus impliquent des
décalages ou des retards [47, 63, 64, 68, 69]. Ainsi, les techniques de modélisations
modernes utilisent des équations différentielles a retards comme un outil puissant
pour mieux décrire et comprendre la dynamique de ces systemes [35]. Cependant,
I'utilisation des équations a retards, apporte plus de complexité mathématique dans
leurs études. Heureusement, au cours de cette derniere décennie, des progres rapides
ont été réalisés dans ce domaine. De nouveaux outils, logiciels et des techniques

numériques efficaces ont ravivé I'intérét pour ces équations [42].

1.2 Motivation

Les problemes de stabilité et de stabilisation des équations a retards occupent
une place importante en théorie du controle en épidémiologie. Cette théorie s’efforce
d’apporter des résultats et des méthodes permettant de comprendre, d’analyser et
de résoudre des problemes associés a des systemes controlés. Ces systemes ont des
variables qui permettent d’influencer sa dynamique et qui peuvent étre ajustées.
L’un des domaines d’application est 1’épidémiologie.

L’un des objectifs fondamentaux de I’épidémiologie est la construction des controles

suffisamment réguliers pouvant étre utilisés en pratique. En ce qui concerne les
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systemes sans retard, de nombreux outils performants peuvent permettre de construire
ces controles. Dans la plupart des cas on s’intéresse a ceux qui assurent la stabilité
des systemes. Des outils de stabilité sont pour beaucoup d’entre eux bien maitrisés
pour les systemes sans retard. Parmi ceux - ci, la stabilité de Lyapunov est la plus
utilisée. Par contre, la stabilité et la stabilisation des systemes dynamiques multi
- retards sont encore des notions insuffisamment explorées en épidémiologie, bien
que des techniques de linéarisation permettent d’obtenir dans certains cas de bons
résultats. Dans le cas des systemes non linéaires a retards, les outils d’analyse de sta-
bilité sont relativement peu nombreux. Le plus célebre d’entre eux est certainement
la théorie de bifurcation de Hopf [40, 44, 68].

Nous nous proposons dans ce travail d’explorer de nouvelles propriétés qualita-
tives des bifurcations dans le cadre des systemes dynamiques a retards applicables

pour des modeles épidémiologiques.

1.3 Problématique

Le probleme de stabilité des systemes a retards en épidémiologie est un sujet
transversal de grand intérét a la fois par les mathématiciens, les physiciens et les
ingénieurs depuis le siecle dernier. Beaucoup de livres ont été écrits a ce sujet (
voir par exemple [30, 54]), a la fois sur le plan théorique et sur le plan pratique. Les
systemes physiques sont souvent complexes et difficilement exploitables, notamment
pour des systemes a retards. Le grand probleme de stabilité est la représentation
de ces systemes physiques avec une précision suffisante et un modele de structure
simple.

En épidémiologie, pour décrire le comportement d’'un systeme a retards, une hy-
potheése communément faite est la linéarité du systeme du fait que les techniques
d’analyse des modeles linéaires ont été largement développées dans la littérature.

Cependant, 'hypothese de linéarité n’est vérifiée que dans une plage de fonction-
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nement restreinte autour d’un point d’équilibre du systeme. Les performances du
modele se dégradent des lors qu’on s’en éloigne et la recherche d’'un modele plus
adapté et notamment non linéaire a retards devient plus que nécessaire.

De fagon générale, la connaissance, entiere ou partielle, des parametres retards
d’'un systeme dynamique est une exigence importante. Sur un plan pratique, cette
exigence s’avere difficile a satisfaire directement. Ceci est dii, d'une part, au fait que
les retards n’ont pas toujours une signification physique et leurs mesures directes
sont souvent difficiles a réaliser. D’autre part, lorsqu’un retard existe physiquement,
sa mesure peut étre délicate a effectuer d’'un point de vue technique (précision in-
suffisante).

En épidémiologie, il est souvent souhaitable d’introduire un controle optimal
afin de réduire les instabilités et le chaos dans les solutions. Nous nous proposons
d’aborder ces problemes par une approche numérique qui consistera a déterminer les
points de bifurcations de Hopf des systemes différentiels linéaires multi- retards du
systeme étudié en fonction des entrées connues, des sorties et du modele dynamique
de celui-ci.

De fagon spécifique, ce travail s’intéresse a une classe particuliere des systemes, dit
systemes dynamiques multi - retards pour lesquels notre étude se focalisera a la
détermination des propriétés asymptotiques des solutions.

La problématique fondamentale de cette these est consacrée a 1’établissement d’une
dynamique transitoire pour des systémes multi - retards afin de controler leurs
impacts. Théoriquement ces phases transitoires sont tres difficiles a établir pour
des systemes dynamiques a plusieurs variables et multi - retards. Des approches
numeériques existantes ne permettent pas une bonne caractérisation des phases tran-
sitoires et sont inefficaces pour de systemes a grand nombre de variables. Notre
contribution dans cette these consistera a présenter de nouvelles approches pour
la détermination des points de bifurcations de Hopf des systemes différentiels non

linéaires multi- retards.
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1.4 Organisation de ce mémoire

Les travaux de cette these s’articulent autour de cing chapitres. Le premier
chapitre donne un bref apercu sur I'état de 'art et les motivations de la these.
Dans le deuxieme chapitre nous définissons les concepts généraux utilisés tout au
long de ce mémoire de these. Nous abordons ensuite au troisieme chapitre des no-
tions spécifiques aux systemes non linéaires a retards. Nous développons plus par-
ticulierement des concepts liés a la dynamique chaotique et a la bifurcation. Dans
ce chapitre nous présentons aussi des techniques classiques de base de I'analyse des
systemes a retards, a savoir la stabilité et la stabilisation, ainsi que leurs avantages
et inconvénients. Dans le quatrieme chapitre nous faisons un tour d’horizon général
sur la simulation numérique des systemes dynamiques a multi- retards, I'intérét de
leur simulation et les approches numériques existantes dans la littérature. Enfin, I'es-
sentiel de notre contribution est developpé dans ce chapitre. Le cinquieme chapitre
est consacré a l'analyse théorique et numérique de quelques systemes dynamiques
issus de I’épidémiologie. Une conclusion générale et les perspectives de ce travail

sont données au dernier chapitre.

Ce travail a fait I'objet de trois articles publiés dans des journaux scientifiques

indexés par des abstracts [28, 43, 48].




Chapitre 2

Apercu général des systemes

dynamiques

Un systeme dynamique est défini comme un systeme classique dont 1’évolution
au cours du temps est a la fois :

— causale (son avenir ne dépend que de ses états antérieurs et présents), et

— déterministe, c’est - a - dire que son état initial va correspondre a un et un

seul état futur.

Une telle définition exclut, conventionnellement, tout systeme bruité dont ’évolution
est aléatoire et qui intrinséquement releve de la théorie des probabilités. Les systemes
dynamiques peuvent étre représentés par des modeles a temps continus, généralement
définis par des équations différentielles ordinaires, ou par des modeles a temps dis-

cret qui sont définis par des équations discretes.

Dans ce chapitre, nous donnons des notions de base sur 1’étude qualitative des
systemes dynamiques. Nous nous focaliserons essentiellement sur des systéemes gou-
vernés par des équations différentielles ordinaires. On peut se référer a [19, 31, 33, 57
pour des exposés plus exhaustifs.

Formellement, dans le cas continu, un systeme dynamique peut étre défini par une



application

0 R x U — R"

(t, x) = (t, x)

vérifiant
¢ (to, o) = o (2.1)
p(ta, p(t1,2)) = (t1 + 12, ) (2.2)
ou U est un ouvert de R", n > 0.
Noter que I'application
t— o(t, xg)

définit donc une trajectoire décrivant I’évolution d’un systeme dont I’état initial est
xo. L’application ¢ est appelée flot et elle décrit toutes les évolutions possibles d'un
systeme dynamique. Il est établi qu” étant donné un flot ¢ d’un systeme dynamique,
pour chaque état initial xy € U, 'application t — @(t, xg) est solution d’un probléeme

de Cauchy de la forme

(LT
(2.3)
.%'(to) = 29-

Dans toute la suite nous noterons parfois x(t) ou x(t; ty, ) une solution du
probléme (2.3) si nous supposons en outre qu’elle est unique. Le résultat suivant

est utile pour I’étude qualitative des solutions du probleme (2.3).

Proposition 2.1 [4]
Si Uapplication f est continue sur RY x U alors pour tout (ty, x¢) € RT x U le

probléeme (2.83) est équivalent a I'équation intégrale

z(t) = xo —l—/t f(s, x(s))ds. (2.4)




2.1. Existence et unicité

Pour sa maniabilité, I’équation intégrale (2.4) est souvent utilisée au lieu du probleme

(2.3), par exemple pour les preuves d’existence et d'unicité de la solution.

2.1 Existence et unicité

Nous nous intéressons, ici, a I’étude de l'existence et de 1'unicité des solutions
des systemes dynamiques gouvernés par les systemes de la forme (2.3). Un résultat

fondamental de I'unicité de la solution de (2.3) est donnée par le théoreme ci - apres.

Théoréme 2.1 (Unicité) [4]
Si f est continue et si Uapplication x — f(t, ) est localement lipschitzienne alors

le probleme (2.3) admet une solution unique.
C'f [4] pour la preuve du théoreme 2.1.

Définition 2.1
Soient x une solution de l’équation (2.3) et I C R un intervalle sur lequel x est
définie.
— Une fonction & est un prolongement de x si elle définie sur un intervalle I 2 I,
coincide avec x sur I, et vérifie la relation (2.3) sur I.
— La solution x est dite mazimale® si elle n’admet pas de prolongement. Dans

ce cas Uintervalle I est dite intervalle mazimal d’existence de la solution x.

L’existence d’une solution maximale prolongeant toute solution est une conséquence
du Lemme de Zorn [55]. L’intervalle maximal d’existence d'une solution est toujours

ouvert.

Corollaire 2.1 [4]
Soient x une solution mazimale de 'équation (2.1) et I =|a, b son intervalle maxi-

mal d’existence. Alors x(t) tend vers le bord de U lorsque t tend vers a ou vers b.

O

1. on dit aussi non prolongeable
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Théoréme 2.2 (Cauchy - Lipschitz) [4]

Soit n € N*, I un intervalle ouvert de R,  un ouvert de R" et
f:IxQ—R"

(t, ) = [f(t,x)

une fonction continue et localement lipschitzienne en x, c’est - a - dire que, pour

tout compact K C I x €2, il existe L > 0 tel que

1t @0) = [t wo)|| < Ly = @, ¥ (8 @), (8 22) € K

1. (Ezistence et unicité locale)

Pour tout (ty, xo) € I x Q, il existe (a,b) C I contenant ty, et une unique

solution x € C' ( (a,b), R" > du probleme de Cauchy

dx
i f(t, x), t € (a, b)

(2.5)
ZE(tQ) = 29

2. (Unicité globale en temps)
Pour tout (to,zo) € I X , pour tous a, b € R vérifiant a < ty < b, il existe

au plus une fonction x € C' ( (a,b), R" > du probléme de Cauchy (2.5).

Théoréme 2.3 (Existence globale en temps)

1. (Critére de prolongement, explosion en temps fini)
Soit f: (a,b) x R" — R continue sur un intervalle J =|T,, T™.

x une solution maximale de d—f = f(t, x). Alors

e ou bien T* =b (resp. T, = a),

11
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e ou bien T* < b (resp. T, > a) et alors x n’est pas bornée au voisinage de
T* (resp. T.).
2. (Condition suffisante d’existence globale)
Soit f: R x R" — R" continue.

On suppose qu’il existe My, M, € L, ( R, Rf ) telles que
1t o)l < Mo(t) + My(@)[|zf], V (t,2) € R xR"

alors pour tout (to, xg) € R x R", la solution mazimale de

dx
E - f(t7 :L‘)7
JZ(to) = T,

est définie sur tout R. [

La preuve du théoréme 2.3 nécessite le Lemme de Gronwall, lequel est particulierement

fondamental dans ’étude des équations différentielles.
Lemme 2.1 (Gronwall)

Soit ¢ €C”( [a,b], R ).

On suppose qu’il existe A >0, u € L! ( (a,b), RY ) telles que

o(t) < A+ /tu(s)go(s)ds, vV tela,l]

alors

o(t) < Aelav®ds vy ¢ la, b].

Preuve

La fonction F' définie par

F(t) = A+ /tu(s)ga(s)ds, vV tela,bl,

12
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est de classe C* sur [a, b] et vérifie

d'ott l'on déduit
4
dt

et, apres intégration, il vient

( F(t)e Jau()ds ) <0, V tela,b].

F(t)e Jau)ds < p(q) = A, Y te€[a,b],
Par conséquent
o(t) < F(t) < Aedam@ds ¢ € [a,b).

O
Nous pouvons maintenant donner une preuve du théoreme 2.3.

Preuve du théoréme 2.3

1. On suppose que T* < b et que x est bornée au voisinage de T™.
Il s’ensuit grace a la continuité de f que Papplication t — f (¢, x(t)) est bornée

au voisinage de T™. Il existe 6 > 0, M > 0 tels que
IfE, x@) <MV te[l™ -4 T7.
Par conséquent, pour {1, ty € [T* =4, T*], on a

l2(tr) — x(t2)]| = /t F (n)dr < Mt~ .

Ainsi, z(t) est de Cauchy quand ¢ — T, donc il existe z; € R" tel que
x(t) > zy quand ¢t— T". D'ou

dx(t)
dt

= f(z(t) = f(zy) quand t—T".

Soit & : (T, T"] — R" prolongeant z, par (1) = x;. Le raisonnement
précédent montre que ¥ € C* ( (T., T*], R" ) et Z est une solution du meéme
probleme de Cauchy que « sur lintervalle (T, 7], strictement plus grand que

(T, T™). Ceci contredit la maximalité de .

13
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2. Soit z une solution maximale de dz/dt = f(x(t)). Supposons x définie sur
(T, T™) avec T" < 4o00.
Il vient, d’apres le 1., que x n’est pas bornée au voisinage de T™.

Soit ty € (Ty, T™). Pour tout t € (ty, T"), on a

www=|mm+[ﬂnummn

IA

e+ [ ( Mo(r)+M1(r) ) L)

to

t
< lz(to)ll + [[Moll 1 to, 7+) +/ My (7)|a(7) |dT.
to
Le Lemme de Gronwall fournit alors la majoration suivante
M * *
1@ < (ool + 1Moz, 2= ) ¥l v e o, 77),

ce qui est impossible, puisque x n’est pas bornée au voisinage de T™.

l

2.2 Notions d’équilibre et de stabilité [2, 13|

L’évolution des systemes dynamiques révélent 1’existence de points ”privilégiés”
ou différents états ont tendance a y rester. Ces points sont appelés points d’équilibre.
La stabilité d’un point d’équilibre d’un systeme, qu’il soit dynamique ou non, consiste
toujours a observer que son évolution reste proche du point d’équilibre lorsqu’on s’en
écarte, dans un certain voisinage, appelé domaine de stabilité. L’attracteur, quant
a elle, revient a traduire que, s’écartant 1égerement de cette position d’équilibre, le
systeme reviendra sur celle - ci au bout d’un certain temps. La stabilité asymptotique
combine a la fois la stabilité et 'attractivité, et indique donc que le systeme revien-
dra au bout d'un temps qui peut étre infini, au point d’équilibre, tout en restant
proche de celui-ci au cours du temps. Notons que la notion de stabilité asymptotique
est la plus exigée en pratique. Ceci s’explique certainement par le fait qu’elle consti-

tue une premiere approche pouvant s’adapter a plusieurs situations (précision en

14
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régulation, poursuite d'une trajectoire de référence, ...). La stabilité exponentielle
vient ajouter au caractere asymptotique un critere de rapidité de convergence.
Avant de détailler les diverses définitions de la stabilité, il convient en premier

lieu de définir la notion d’équilibre pour un systeme dynamique.

Définition 2.2

Un point ¢ € R™ est dit point d’équilibre (ou point stationnaire) du systéme différentiel

dx

% = f(t’ x) (26)

sl existe un temps fini T tel que f(t, x°) =0 pour tout t > T.

Définition 2.3

Un point d’équilibre x¢ de (2.6) est dit stable si pour chaque § > 0 et quelque soit
to € RT il emiste w(d,ty) > 0 tels que | z(t,to,7) — 2° |< & pour chaque t > to toutes
les fois que | v — z° |< w(d,ty) ou (t,ty,7y) est une solution de (2.6) avec l’état

initial z(tg) = 7.

Définition 2.4

Un point d’équilibre x¢ de (2.6) est dit asymptotiquement stable si :
1. il est stable et

2. pour chaque to > 0 il existe e(ty) > 0 tel que tlim x(t;to,y) = x° toutes les fois
—00

que | v — af |< e(to).

Noter qu'un point d’équilibre x = z° de (2.6) est dit instable s’il n’est pas stable.
D’autre part, a la différence des systemes linéaires, les systemes non linéaires peuvent
posséder plusieurs points d’équilibre ayant des propriétés tres différentes. Pour illus-
trer ce fait, considérons un systeme physique régi par 1’équation différentielle sui-

vante :

dx

P + 22, t>0. (2.7)
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Cette équation admet deux points d’équilibres 0 et 1. La solution générale de celle -

ciest z(t) = k € R. Son graphe (figure 2.1) montre bien que 0 est asymp-

1 — ket’
totiquement stable et que 1 est instable. En pratique, il est souvent difficile d’établir
directement cette propriété a partir d’une solution explicite du probleme. L’étude

de la stabilité d'un point d’équilibre peut alors se faire par une étude locale.

Concernant 1’étude de stabilité des systemes différentiels deux approches sont cou-
rantes :
— Dans la premiere approche, le systeme (2.6) est d’abord linéarisé autour d’un

point d’équilibre 2. On se ramene alors a un systeme différentiel de la forme

dX .
=AM (X ) (2.8)

et, dans le cas des systémes autonomes, c’est - a - dire si A(t) = A ( matrice
ne dépendant pas de t), une condition nécessaire de stabilité est que toutes les
valeurs propres de A aient une partie réelle négative. (Voir, par exemple, [62]
pour un énoncé précis du théoreme).

— Une deuxieme approche est liée a la théorie de stabilité de Lyapunov [59]. Cette
théorie est particulierement adaptée aux systemes différentiels non autonomes.
Les résultats de stabilité sont basés sur I’existence d’une fonction de Lyapunov

satisfaisant certaines propriétés. Donnons en une définition ci - apres.

Définition 2.5
Une fonction V : D C R™ — R est appelée fonction de Lyapunov si elle satisfait

les deuz conditions suivantes :

oV (x
— V(z) est continue et ses dérivées partielles >, Vi=1,...,n, existent et
T

sont continues.

— V(x) est définie positive, c’est - a - dire V(x) >0,V x #0 et V(0) =0.

Théoréme 2.4

Dans le voisinage D C R", ’état d’équilibre x = 0 du systeme (2.6) est :

16
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20r
5¢
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20 | | | ' | ' ' '
0 02 04 06 08 1 12 14 16 18
t

FIGURE 2.1 — Stabilité et instabilité des points 0 et 1 de [’équation (2.7).
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— localement stable, s’il existe une fonction de Lyapunov V : D — R telle que

V(z) <0,VzxeD.

— Localement asymptotiquement stable, s’il existe une fonction de Lyapunov, V :
D — R telle que V(z) <0,¥ z € D.
O

Théoreme 2.5
L’état d’équilibre x = 0 du systeme (2.6) est globalement asymptotiquement stable
s’il existe une fonction de Lyapunov V : R"™ — R™ telle que

- V(z) <0,V z e R\{0},

- lim V(z) = oco.

l[z[| o0

g

La seconde propriété signifie que la fonction de Lyapunov est radialement non
bornée. De cette hypothese il est prouvé que les surfaces de Lyapunov V(z) = ¢

sont fermées et assurant ainsi la convergence vers 1’origine.

2.3 Cycles limites

Nous donnons ici quelques définitions sans trop entrer dans les détails.

Définition 2.6 (Cycle périodique)
Une trajectoire x du systeme (2.3) est appelée cycle périodique si elle n’est pas réduite

a un point et si il existe une constante T, > 0 telle que
x(t+T1,) = x(t), —00 <t < 400
la constante T}, est la période du cycle. Nous dirons donc que x a une période T,,.

Définition 2.7 (Cycle presque - périodique)

18



2.4. Bifurcation

1. Considérons une trajectoire unidimensionelle x continue et un nombre positif

e; 7(e) est un nombre de translation de x si :
|le(t+7(e)) —z(t)]] < e vVt eR

2. la trajectoire x(t) est appelée presque - périodique si pour tout € > 0, un

ensemble relativement dense de nombres de translation 7(g) existe.

Un cycle limite est une solution temporellement périodique qui est indépendante des
conditions initiales et qui possede une fréquence intrinseque au systeme indépendant

des conditions initiales. On peut donner la définition suivante.

Définition 2.8 (Cycle limite)
Posons Q(z) = {z € R"/ lim a(t) =a°}.
t — 00
Un cycle périodique ou presque périodique y de (2.3) est appelé cycle limite s’il existe
au moins une autre trajectoire x telle que x # v et Q(x) = 7.
Un exemple typique de cycle limite est donné par 1’équation de Van der Pol
d*x

dx
T a(l — 2*)— — z dont les solutions représentées sur la figure 2.2.

dt

2.4 Bifurcation

Dans la modélisation des systemes (Biologiques, physiques ...) les incertitudes
liées aux phénomenes (estimation des parametres etc...) sont toujours présentes.
Pour tester la robustesse d’un modele face aux perturbations ainsi engendrées, on a
donc recours a certains outils mathématiques spécifiques. Il est important de souli-
gner que des perturbations de méme amplitude peuvent étre de plusieurs natures et
leurs impacts sur un systeme donné peuvent étre tres différents. Comme les incerti-
tudes les plus importantes portent sur les parametres, nous allons nous restreindre

aux modeles parametrés pouvant se formuler comme suit :

dx
i flz, t; a), (2.9)
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2.4. Bifurcation

ou, « € D C RP désigne un vecteur parametre. Pour ces types de modeles, I'ana-
lyse consiste tres souvent a identifier des valeurs des parametres pour lesquelles le
comportement asymptotique du systeme change qualitativement. Les valeurs cor-
respondant aux changements qualitatifs des propriétés sont appelés valeurs de bi-
furcation. Elles permettent donc de savoir si le systeme est consistant malgré les
perturbations dues a l'incertitude sur I'estimation des parametres (s’il n’y a pas de
valeur de bifurcation dans la zone d’incertitude des parametres) ou non (s’il existe
au moins une valeur de bifurcation dans la zone d’incertitude de parametres). Elles
peuvent aussi apporter beaucoup d’autres renseignements sur le systeme. Nous nous
intéresserons dans ce travail qu’aux bifurcations locales, c¢’est - a - dire relatives a

un point d’équilibre.

2.4.1 Une approche

Une bifurcation pour un systeme de type (2.9) peut étre per¢gue comme un chan-
gement qualitatif des propriétés des solutions lorsqu’on modifie le parametre . De
maniere plus précise, un point de bifurcation est un parametre ou il y a un chan-
gement fondamental des propriétés lorsqu’on s’en écarte. Pour mieux appréhender

cette notion, considérons I’exemple suivant.

Exemple 2.1
Soit l’équation différentielle suivante

d:v_

i f(z, @) =ar+2* (2.10)

1l s’ensuit que :
— st =0 alors il y’a un seul point d’équilibre x =0 ;
— st > 0 alors il y’a un seul point d’équilibre x =0 ;
— sia <0, il y'a trois points d’équilibres x = 0 et x = +v/—a.
df

Par ailleurs, au point d’équilibre x =0 on a e 0= a. Il vient alors que
rlr =

Uéquilibre x = 0 est stable si a < 0 et instable si a > 0 (voir figure 2.3).
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2.4. Bifurcation
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2.4. Bifurcation

Il existe plusieurs types de bifurcations. On donne ci - apres quelques exemples

d’entres elles.

2.4.2 Bifurcations selle - noeud

Une bifurcation ”selle noeud” est caractérisée par le fait que sur un coté de celle -
ci deux équilibres existent, tandis que sur ’autre coté ces équilibres disparaissent. Le
point de bifurcation peut étre considéré comme le point ou les deux équilibres sont
en collision. Une bifurcation selle-noeud peut avoir lieu dans n’importe quel systeme
et est, en fait, une bifurcation tres typique qui se produit quand un parametre
est modifié. Une bifurcation selle-noeud est aussi appelée bifurcation pli, bifurca-
tion tangente, bifurcation du point limite, ou bifurcation tournante. Une condition

nécessaire d’existence de ces bifurcations est donnée par le théoreme suivant.

Théoréme 2.6 (Bifurcation selle - noeud)

Soit
dx

o f(z; a), (2.11)

avecx € R et v € R. Si en un point (xo, *) les conditions suivantes sont satisfaites :

(1) f(m()a a*) = 07'

Of(xg, o
(i) 2 0,
02 f(zg, )

(iff) =g #0

B

alors o est une bifurcation selle - noeud.

Exemple 2.2

L’équation générique pour une bifurcation selle - noeud est donnée par

dx

i flz, @) =a—2° (2.12)
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2.4. Bifurcation

~ Si o < 0 Uéquation o — x* = 0 n’admet pas de solution alors on n’a pas de

point fixe.

- Sia>0,a—a®>=0 admet deuz racines ++/a
of (x; of (x;

w — 2/a<0 et w —92/a>0.
Par suite le point fize x = \/a est stable, mais x = —+/a est instable.

- Sia=0 le seul point fize est x = 0, par intégration de (2.12) on obtient
1
z(t) = I+ L d’ou le point x = 0 est semi-stable.

(Stable si x00> 0 et instable si xo < 0) (voir figure 2.4).

2.4.3 Bifurcation transcritique

La bifurcation transcritique ne se produit que lorsque le systeme a un équilibre
qui existe pour toutes les valeurs du parametre et ne peut jamais étre détruite.
Lorsque cet équilibre entre en collision avec un autre équilibre, les propriétés de
stabilité changent, mais continuera d’exister a la fois avant et apres la bifurcation.
Par conséquent, les deux équilibres passent a travers les uns les autres. Le théoreme

fondamental pour ces bifurcations est :

Théoréme 2.7 (Bifurcation transcritique)

Si en un point (xg, ) les conditions suivantes sont satisfaites :

(i) f(zo, @) =0

i) oo @) %ﬂ; )y
02 f(zo, a*)

(iii) 0z #0
(iv) Of (xg, a)

0

Oa 7

alors o est une bifurcation transcritique.

Exemple 2.3

Un exemple générique de bifurcation transcritique est
dx 9
— =Qqr—x 2.13
= (2.13)
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2.4. Bifurcation

L’équation admet deux points fires x =0 et © = «

o (@ a) _ o M o) N
ox ox
‘ =0 T =«

Par suite :

- Sia <0, le point fixe x = 0 est stable, mais x = « est instable.
- Sia>0, le point fire x = 0 est instable, mais r = « est stable.

- Sia =0, le point fize est x = 0. Par intégration de (2.13) on obtient :

1
t+ L

zo

x(t) =

d’ou le point x = 0 est semi - stable.

(stable si xo > 0 et instable si xy < 0) (voir figure 2.5).

2.4.4 Bifurcation fourche (pitchfort)

La bifurcation fourche n’existe que quand il y a une symétrie de réflexion présente
dans le systeme. Une équation générique s’écrit

dx
— =ax+2® 2.14

o (2.14)
Ce systeme admet une symétrie de réflexion en x = 0. Pour un changement de x en

T = —ux, I'équation (2.14) reste inchangée. On a le théoreme suivant

Théoréme 2.8 (Bifurcation fourche)

Soit
d_x
dt

avec x € R et aw € R. Si en un point (xg, a*) les conditions suivantes sont satisfaites :

= f(z; a), avec f(—z; a)=—f(z; ) (2.15)

- f(zo, @) =0 pour tout o € R,
- ﬁ(Jc a*) =0
it o).
Tg, a*
. 70
B f(l’(), o ) 7& 0
Oa

alors * est un point de bifurcation de fourche
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2.4. Bifurcation
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2.4. Bifurcation

Dans P'équation (2.14), lorsque le terme cubique est —z?, la bifurcation fourche est
dite supercritique, tandis que si le terme cubique est +z>, la bifurcation est dite

sous-critique.

Exemple 2.4 Bifurcation fourche (Pitchfork)

Soit l’équation

dx 3
— =ar—=x 2.16
Posons f(z, a) = ax — 2. Alors si a < 0 on a un seul point five v = 0.
a .
Sia > 0 on a trois points fives, v = 0, v = /o et x = —/a. etw =«
x
=0
a .
et w = —2a par suite :
S P/
- St a <0, le seul point fivre x = 0 est stable.
-~ Sia >0, le point fire x = 0 est instable, mais x = \/a et x = —/a sont

stables. On remarque un échange dans le nombre des points fixes et dans la

stabilité en o =0 (voir figure 2.6).

2.4.5 Bifurcation de Hopf

Une bifurcation importante est la bifurcation de Hopf. Pour la définir, considérons

le systeme différentiel autonome a un parametre suivant :

d
d—f = f(z; a), T€R", a€cR, (2.17)

ou f est une fonction suffisamment réguliere. On a :

Définition 2.9 (Bifurcation de Hopf )

On dit que le réel o est un point de bifurcation de Hopf pour le systéme (2.17) si

i) en a =, (2.17) admet un point d’équilibre xo et en ce point la matrice Jaco-
0
bienne 8—f(x0, a*) admet une paire de valeur propre simple imaginaire +iwy,
x
wo > 0.

ii) Et (2.17) admet un cycle limite unique correspondant & une solution périodique.
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2.4. Bifurcation
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2.5. Notions de chaos

Théoréme 2.9 (Poincaré - Andronov - Hopf) [46]

Supposons que le systéme autonome non-linéaire (2.17) admet un point d’équilibre

Of(zo, )
ox

propres conjuguées \(a) et M(«). S’il existe o tel que

x = xo et que la matrice jacobienne A = admet une paire de valeurs

(i) Re(A(a®)) = 0
iy 2By

Jda la=a«
alors o* est un point de bifurcation de Hopf.

Quand une paire de valeurs propres complexes conjuguées se déplace a travers I'axe
imaginaire, généralement une bifurcation de Hopf se produit. Cette bifurcation est
liée a la bifurcation fourche, comme nous le verrons plus tard. La bifurcation de
Hopf aura lieu lorsque le parametre de controle A prend une valeur critique A pour
laquelle la matrice jacobienne du systeme possede une paire de valeurs propres com-
plexes conjuguées qui traversent 1’axe imaginaire et le type de stabilité de 1’équilibre
existant change avec 'apparition d’un cycle limite. Cette bifurcation est illustrée sur

les figures 2.7 et 2.8.

2.5 Notions de chaos

2.5.1 Une tentative d’approche de la notion

Dans les années 1990, de nombreux livres ont été dédiés a la théorie du chaos
(voir, par exemples [3, 15, 21]). En fait une tentative de définition du chaos est : on
dit qu’un systéme est chaotique lorsque son évolution dans le temps est tres sensible
aux conditions initiales et qu’il est impossible de prédire exactement dans quel état
il va se trouver si l’on attend trop longtemps.

L’atmosphere terrestre en est un exemple quotidien. Les météorologues ont en

effet beaucoup de mal pour faire des prévisions convenables au dela d’une semaine
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diagramme de bifurcation ou l’on trace le rayon r du cercle en fonction de . En

a > 0 la trajectoire de phase se dirige vers le point fixze a ['origine.
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2.5. Notions de chaos

en dépit du fait que les équations qui gouvernent I’atmosphere soient parfaitement
connues.

Pour les systeémes réguliers (non chaotiques) une petite erreur a tres peu d’in-
fluence sur sa dynamique alors qu’au contraire pour les systemes chaotiques, par
définition, une petite cause peut avoir de grands effets. C’est donc au début des
années 70 que le rapprochement entre les travaux de physiciens et de mathématiciens
a permis la découverte de la réalité mathématique du chaos dans les systemes phy-
siques déterministes. La notion méme de solution chaotique est difficile a formuler.
Nous avons donc fait le choix de I’aborder sur la base des caractéristiques compor-

tementales des solutions.

Un systeme dynamique peut présenter des solutions chaotiques instables. Celles-
ci ne pouvant étre ni observées ni méme simulées, nous ne traiterons que des solu-
tions chaotiques stables. Une solution chaotique a un comportement asymptotique
borné. Elle n’est ni un point d’équilibre, ni une solution périodique ou méme quasi
périodique. Le chaos peut donc étre défini par défaut pour d’autres types de solutions
sachant qu’il n’existe pas de définition a la fois formelle et générale. Pratiquement,
une dynamique chaotique peut étre identifiée, en premiere analyse, par la recon-
naissance des proprié¢tés caractéristiques d’attracteurs étranges, et de sensibilité aux
conditions initiales.

La plupart des systemes chaotiques exhibent la sensibilité aux conditions ini-
tiales. Pour deux conditions initiales arbitraires tres voisines les trajectoires corres-
pondantes divergent exponentiellement.

Nous donnons ci - apres quelques exemples d’équations chaotiques.

2.5.2 Exemples de modeles chaotiques

Nous présentons ici deux exemples typiques des systemes chaotiques gouvernés

par des équations différentielles.
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2.5. Notions de chaos

Nous illustrons les solutions de ces systemes sur les figures 2.9 et 2.10

Exemple 2.5 (Systeme de Lorenz)

Le systeme de Lorenz est un systeme différentiel définit par

(d
d—f:a(y—x)
@—rx— —xz
a ~ Y
dz

\ %:xy—bz

ou o,r,b sont des réels positifs. Ce modele est celui d’'un écoulement fluide dont
les états z,y, z représentent respectivement la vitesse de ce fluide, la différence de

temperature verticalement et la différence de temperature horizontalement.

Les valeurs de o et b sont fixées respectivement & 10 et 8/3. Le parametre de controle
est r. La solution triviale x = y = 2z = 0 du systéeme correspond physiquement a
un régime ou le fluide est au repos et ou la chaleur se transmet uniquement par
diffusion moléculaire (état conductif). Pour r grand, cet équilibre est instable et il
laisse la place a des régimes ou le transfert de chaleur est réalisé par diffusion et par
convection. Lorsque r > r., le systeme transite vers un régime chaotique. Toutes les
trajectoires convergent vers une trajectoire chaotique : [’attracteur étrange. Cette
sensibilité aux conditions initiales, ainsi que le chaos déterministe observé avec ce
systeme dynamique simple ont servi de base a ce que 'on a appelé ” [’effet papillon
7. Un systeme chaotique est imprévisible, mais il est parfaitement décrit par des
équations simples et déterministes.

La théorie du chaos décrit qualitativement les comportements a long terme des
systemes dynamiques. Dans ce cadre, on ne met pas l'accent sur la recherche de
solutions précises aux équations du systeme dynamique, mais plutot sur la réponse
a des questions telle que : ”le systéme convergera - t - il vers un état stationnaire a
long terme ¢ Et, dans ce cas, quels sont les états stationnaires possibles ¢ 7 ou” Le

comportement a long terme du systeme dépend - il des conditions initiales ?”.
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2.5. Notions de chaos

Exemple 2.6 (Systeme de Rossler)

Le systeme de Rossler est donné par les équations suivantes :

(dv .
it~ Y
d
3 d—‘qi::cjtay
k%:quz(x—c)

Ces équations représentent physiquement un modele ot les états x, y et z représentent
les concentrations des substances d’une réaction chimique. Les parametres a, b et ¢

intervenants dans le modele sont supposés positifs.
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(@) (b)

20

FIGURE 2.10 — Représentation du systemes de Rossler pour différentes valeurs a, b, c.
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2.5. Notions de chaos

Conclusion

Dans ce chapitre nous avons présenté quelques éléments de la théorie des systemes
dynamiques linéaires ou non linéaires. Différents types de bifurcations ont été évoqués.
Parmi ces bifurcations, celle qui retiendra notre attention pour la suite de ce mémoire
est la bifurcation de Hopf. Cette bifurcation est particulierement intéressante car elle
met en évidence des régions de stabilité et les solutions bifurquées sont oscillatoires.
Par ailleurs, certains points de la théorie du chaos ont été brievement évoqués.
Notamment, il en découle des exemples présentés a cet effet que des systemes
différentiels en apparence simples peuvent produire des solutions chaotiques dont

I’évolution a long terme est tout a fait imprévisible.
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Chapitre 3

Quelques éléments de la théorie
des systemes dynamiques multi -

retards

Nous donnons ici quelques notions importantes pour une étude qualitative des
systemes dynamiques multi - retards. Une attention particulierement sera accordée
aux systemes gouvernées par des équations différentielles non linéaires. De facon
précise, les aspects d’existence, d’unicité et de stabilité de solutions seront revisités

dans un cadre spécifique des systemes multi - retards.

3.1 Définition

Comme énoncé au chapitre précédent, nous ne considérons que des systemes

différentiels continus. Soit 7> 0 et z, € C(] — 7, 0], R") tel que z,(6) = z(t + ).

Définition 3.1
Soient U un owvert de RxC(]—7, 0], R") et f : U — R? une fonction continue. On

appelle équation différentielle fonctionnelle a retard (EDF R) sur U une relation de
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3.2. Résultats d’existence et d’unicité

la forme
dx(t)
dt

= f(t, xy). (3.1)

Dans le cas multi - retards, cette définition peut - étre généralisée en posant

T:(7—17"’77—p) avec T; >0V et
0 G] — T, O[X o X] — Tp, O[»—> xt<9) c R™>P, (32)

Toutefois, dans le cadre de cette these, un systeme différentiel a retard sera formulé
explicitement comme suit :

dx(t)
dt

= f(t, z, 2(6h),...,2(6,)) (3.3)

avec z4(0;) = x(t +6;) et 0, €] — 7, O[.

3.2 Résultats d’existence et d’unicité

Les équations différentielles a retards ont des caractéristiques qui rendent leurs
analyses plus compliquées que celles des équations sans retard. Elles nécessitent plus
d’informations qu’un probleme analogue sans retard. Par exemple, pour I’équation

différentielle

dx

— = f(z(t), z(t — 1)), (3.4)
dt

déterminer @ (ty), nécessite la connaissance de x(tg) et x(to — 7). Ainsi, il apparait

clairement que la détermination d’une solution de (3.4) exige une information initiale

sur tout Uintervalle [ty — 7, to]. Il s’ensuit qu’un systéme différentiel & retard peut

généralement étre formulé comme suit.

d
=), 2t
(3.5)

Tty = o € C(] - T 0[7 Rn)
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Théoréeme 3.1 [32]
Supposons que la fonction [ soit continue, alors pour tout ¢ € C, le systéme (3.5)
admet au moins une solution. De plus, si la fonction f est localement lipschitzienne

par rapport a x; alors la solution est unique.

O

Ensuite, nous ne nous intéressons pas uniquement aux équations autonomes a donnée

initiale dans C,

:f(xt)a [ )

On a:

Théoréeme 3.2 [38]

Si f est une fonction localement lipschitzienne et vérifie pour tout py € C

@)l <allell +e2, a1, 220

alors, le probléme de Cauchy (5.6) associé admet une solution unique, définie sur
Uintervalle [—7, +00).

O

3.3 Cas plus général des systemes entrées - états
a retards

Comme il a été dit précédemment, tres peu d’études ont été menées sur la
stabilité entrée - état des systemes a retard. Teel a été I'un des premiers a avoir
formalisé ce probleme dans [66] en établissant un lien entre le théoréme de Razu-
mikhin et 'approche proposée par Sontag. Par la suite, dans [58], les auteurs ont
appliqué ces résultats dans le cas d’'un systeme téléopéré avec des retards de trans-

mission. L’application illustrée dans [58], montre parfaitement I’enjeu que représente
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3.3. Cas plus général des systéemes entrées - états a retards

la généralisation de cette théorie a la classe des équations différentielles fonction-
nelles. Dans cet article, les auteurs appliquent les résultats développés par Teel dans
le cas des réseaux de télé opération en médecine modélisés par des systemes non

linéaires soumis a des perturbations.

Un systeme entrée - état a retards, schématisé sur la figure 3.1, est régit par un

systeme de la forme

dx
E = f(xa L, ut)
(3.7)
y<t) = g(l’7 L, ut)-
Les résultats d’existence et d’unicité sont tout a fait analogues a ceux énoncés plus

haut dans le cas des systemes a retards sans entrée.

x(t)

u(t) y(t)
Etat
Entrée Sortie

\ 4
v

FIGURE 3.1 — Schéma fonctionnel d’un systeme multivariable entrée - état.

Afin de revisiter quelques propriétés de stabilité, nous considérons le systeme différentiel

suivant p
T
E = f(t, T, ut), t 2 to,
(3.8)
T, =p €C(]—7, 0], R").

Pour assurer 'existence des solutions, la fonction f est supposée étre continue sur

Rt xC x C.
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Proposition 3.1 [33]
Soient tg € R et ¢ € Cy donnés. On suppose que f est continue. Une fonction x est

solution du probléme (3.8) si et seulement si elle est solution de [’équation intégrale

t
x(t) = po(0) +/ f(s, zs, ug)ds, t <t Ty = Qo- (3.9)
to

3.4 Criteres de stabilité

Dans I’étude des équations différentielles ordinaires et les équations différentielles
a retards, on s’intéresse au probleme de la stabilité des solutions stationnaires (points

d’équilibre).

3.4.1 Stabilité des systemes autonomes a retards sans entrée

Considérons 1’équation a retard autonome suivante :

d.z—(tt) = f(l’t>, t >t

(3.10)
Tty = $o
ou f:C — R" est une fonctionnelle continue. Nous savons qu'un point d’équilibre

de (3.10) est une solution xy de I’équation f(z) = 0. Dans cette section, quitte a

faire un changement d’inconnue, nous supposons que zy = 0.
Définition 3.2 [33]
L’origine du systéeme (3.10) est dite stable en temps fini si :
(i) elle est stable, et

(ii) il existe & > 0 tel que, si py € Cs, alors il existe 0 < T'(pg) < oo tel que

z(po) = 0 pour tout t > T(pp).

To(wo) = inf{T (o) > 0: z4(po) =0,V t > T(po)}
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3.4. Criteres de stabilité

est une fonctionnelle appelée temps d’établissement du systéme (3.10).

Définition 3.3 [33]
L’origine du systéeme (3.10) est dite :

— asymptotiquement stable si elle est stable et s’il existe do(ty) > 0 tel que :

leolle < do(to) = tli}?o z(t; to, ¢o) =0,

— uniformément asymptotiquement stable si elle est uniformément stable et s’il

existe 0y tel que pour n > 0, il existe un T(n) de telle sorte que :

leolle < wo = |lz(t; to, wo)ll <m, Vt>tg+T(n),

— globalement uniformément asymptotiquement stable si la condition précédente

est vraie quelle que soit pg € C.

Remarque 3.1
Si x(t) est une solution quelconque de ’équation (3.10) alors x est stable (resp.

asymptotiquement stable), si la solution z =0 de l’équation

2(t) = f(ze +20) — f24)
est stable (resp. asymptotiquement stable). O]

Dans le cadre des équations différentielles linéaires a retard, la stabilité et stabi-
lité asymptotique peuvent étre déterminées grace a la localisation des racines de
I’équation caractéristique.

En fait, 0 est asymptotiquement stable si et seulement si toutes les racines de la ma-
trice 8_£ =0 sont a parties réelles négatives. S’il existe une racine de I’équation

caractéristique a partie réelle strictement positive, alors la solution x = 0 est in-

stable.

Remarque 3.2

St xg est un point d’équilibre non nul de f et si f est continument différentiable dans
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3.4. Criteres de stabilité

un voisinage de xq, alors la stabilité du point d’équilibre xo est déterminée par la
localisation des racines de [’équation caractéristique associée a l’équation linéarisée

de (3.10) autour de xo. O

3.4.2 Stabilité entrée - état des systemes a retards

Pour un systeme entrée - état, la stabilité est en premiere approche une stabilité
asymptotique globale du point d’équilibre pour une entrée nulle, et en seconde ap-
proche un état borné pour une entrée bornée [70, 71]. Dans [60], Sontag donne une
définition de la stabilité entrée - état, ainsi que le lien existant entre cette stabilité
et celle des systemes retardés sans entrée. Commencons d’abord par introduire les

ensembles suivants :

— Une fonction continue « : [0, a) — [0, 00), ol a est un réel positif, est dite
de classe K si elle est strictement croissante et si «(0) = 0. Elle sera dite de
classe KCoo si a = 00 et ar) — oo quand r — oo.

— Une fonction continue 5 : [0, a) x [0, co) — [0, o0) est dite de classe KL
si, pour r fixé, la fonction B(r,.) est décroissante par rapport a la deuxiéme

variable avec § — 0 quand s — oo.

Définition 3.4 [52, 61]
Le systeme (3.8) est dit stable entrée - état s’il existe une fonction [ de classe KL et
une fonction v de classe Koo telles que, quelle que soit la fonction initiale g et une

entrée bornée u, la solution x,(to, po) existe pour tout t >ty et vérifie l'inégalité

12 to, o)l < B(llvolle, t = to) +7(llurlloc)- (3.11)

Notons que cette définition est principalement utile dans le cas des systéemes non
linéaires. Il est établi (voir [61]) que dans le cas linéaire, les notions de stabilité

entrée - état et stabilité asymptotique sont équivalentes.
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3.4. Criteres de stabilité

Remarque 3.3
Comme dans le cas non retardé, cette définition peut aussi se traduire de fagcon

équivalente sous la forme suivante :

[(t; to, o)l < max[B(lleollc, t —to), Y([[ulloo)]- (3.12)

O

Remarque 3.4

Cette définition implique que si u(t) = 0, alors l'origine du systéme (3.8) est glo-
balement asymptotiquement stable. L’ inverse reste néanmoins fauz et [’on peut s’en
convaincre en considérant l’équation différentielle scalaire &(t) = —x(t)+u(t)x(t—1).
Le systeme est, bien entendu, exponentiellement stable pour une entrée u nulle mais
ne [’est plus si le systéme est soumis a une entrée suffisamment important : si u est

une constante supérieure a 1 les trajectoires du systeme divergent.

O

On a le résultat suivant.

Théoréme 3.3 [34, 52]
Le point d’équilibre x° = 0 du systéeme (3.8) est :

(i) uniformément stable si et seulement si, il existe une fonction «(.) de classe K

et une constante positive c, telle que ['on ait
| z:(tos o) le< all wo lle), Vt>to, ¢o€C,

(ii) wniformément asymptotiquement stable si et seulement si, il existe une fonction

B(.,.) de classe KL et une constante positive c telle que l'on ait
I ze(tos o) lle< Bl @o lles 1), ¥t =10, o €C,

(iii) globalement uniformément asymptotiquement stable si la condition précédente

est vraie quelle que soit oy € C.
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3.4. Criteres de stabilité

3.4.3 Cas des systemes linéaires multi - retards

Dans le cas linéaire, le systeme peut s’écrire sous la forme

l

X(t) = 4X(0) + 2 AX(E-7) + BUW) ¢20 (313)

X(t) = ¢<t>7 —Tmax < T < 1o
avec 1(tg) = Xo. Les A; sont des matrices carrées d’ordre n et B une matrice
d’ordre n x m, 7; € [0, Trnas] €st une constante représentant le ™ retard, X (t) € R"
et U(t) € R™.
On remarque aisément que toute solution de classe C*(0, T, R"™) de (3.13) admet sur

[0, T la représentation intégrale suivante :

t l
X(t) = eAOtXO + / eAO(t—S) ( Z A’LX(S — 7-7;) + BU(S) ) dS. (314)
to i=1

Il vient de cette expression que si la matrice Ay est de Hurwitz alors I'état X = 0 est

asymptotiquement stable. Dans toute la suite, on supposera que Ag est de Hurwitz.

Proposition 3.2
Le systeme linéaire retardé (3.13) est stable entrée - état si et seulement si l'origine

du systeme sans entrée est asymptotiquement stable.

3.4.3.1 Preuve

Sachant que la matrice Ay est de Hurwitz, il existe deux constantes positive ¢ et
r telles que

| et ||< ce™™ VYt (3.15)

Considérant la représentation (3.14) de la solution on a
t—7

I
| X&) |< ce™ || ol +/ ce”“(t’S)e”Z | Ai ||l X (s —7) || ds+

-7 i=1

t
/0 e || B ||| us) || ds
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3.4. Criteres de stabilité

Compte tenu de (3.15), on en déduit

0 l

| X&) |< ce™ || wo | +/ ce_r(t_s)ewz | A Il (s —7) || ds+

- =1

t ! t
/ ce "IN | A | (s — 7 || ds + / ce " | B ||| us) | ds
0 i=1 0

Par suite

l
rT ¢ !
Ix@Use| D NATE g et [T Sl 2o s
0

1—'—121— =1

+C | B ‘u|oo
r

c|

B
En notant que —|||u’Oo est une fonction non décroissante en t et en appliquant
r

I'inégalité de Gronwall [5] on obtient :

t l
l ce—r(t—s)errz ” A, || ds
Aj " -r c || B H / —
||X(t) ||§C Z;” z”e || ©o ||6 t"’T‘UL)Oe 0 i1
d’out
l
! ce”z | Aq |l
=1
. T B
Ix@lse(  DHANET ) g ems LBLT5,
14+ =1 - T 0o

La solution vérifie bien 1’équation (3.11) avec les fonctions

l
sty =l ZIANT et et a0 =
1+=

Ce qui acheve la preuve. [
On pourra noter que ce résultat permet d’analyser de facon plus générale la stabilité

des systemes d’équations différentielles a retards.
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3.5 Sur la bifurcation de Hopf pour les systemes
différentiels multi - retards
Considérons le systeme d’ équations différentielles a retards suivant :

dx
d(tt) = f( z(t), xe(11),s - oo, 2 (Ti) > : (3.16)

ot z(t) € R*, f : RU™D 4 R"™ est une fonction non linéaire, et les 7, > 0,
J =1

...,m. Nous définissons une solution stationnaire z(t) = z° € R" comme

solution du systeme non linéaire

f(:ve, €,z ... ,me> = 0. (3.17)

La linéarisation du systeme (3.16) autour de cette solution permet de se ramener a

un systeme différentiel linéaire que nous pouvons formellement écrire sous la forme.

dx(t - .
d(t) :Ao.%'(t)—f-ZAjl'(t—T]), Tj >0 VJ (318)
j=1
oll, en considérant f comme fonction des variables 2%, 2!, ... 2™ A; € R™" est la

dérivée partielle de f a x¢ évaluée par rapport a (m + 1) arguments :

Aj(t)z%<xe,xe,...,xe>, j=1,....,m. (3.19)

Dans le cas d’une solution stationnaire, les matrices A;(t) = A; sont constantes. En

substituant la solution z(t) = zoe dans 1’équation (3.18), la matrice
m
Axf, N) =M — Ag— Y Aje ™7
j=1
doit étre non inversible pour assurer 'existence de solution non trivialement nulle.

Ceci n’est possible que si A est solution de ’équation caractéristique

Jj=1

p(A) := det ( A — Ay — Zm:Aje_)‘Tj > =0. (3.20)
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Noter que I'équation ci - dessus est dite transcendante. Il est bien connu (voir
[19, 45, 51]) que cette équation transcendante a un nombre infini de racines A € C.
Précisément, I'état stationnaire linéarisé est asymptotiquement stable si toutes les
racines caractéristiques ont des parties réelles négatives, et instable si une ou plu-
sieurs racines ont des parties réelles positives [31]. Ici, le théoreme de bifurcation de

Hopf énoncé au chapitre 2 s’applique en formulant les hypotheses suivantes :

i) Il existe une paire de racines conjuguées de I’équation (3.20) :

AMT1y .oy Tin) = @ £ iwy (3.21)
ii) II existe un vecteur de parametre retard 7* = (7, ..., 7,) tel que
ReX(ry,...,7) =0 (3.22)
et
OReA
0 k=1,...,p. 3.23
o, 7 R (3.23)

T

Sous ces deux hypotheses, en application du théoreme 2.9, 7% est un point de bi-
furcation de Hopf. Notre approche, voir [17] pour une discussion théorique, est de
rechercher des conditions nécessaires et suffisantes pour la stabilité dans un espace
de parametres.

Le nombre de travaux réalisés pour localiser les points de bifurcation de Hopf
numériquement est relativement faible par rapport a ceux réalisés pour localiser les
points de bifurcation stationnaires. Compte tenu de ce qui précéde pour la détection
numérique des points de bifurcation de Hopf dans le cadre de parametre multi -

retard, on doit résoudre équation
p(iw) = 0. (3.24)

Compte tenu de la structure de p, la détection des points de bifurcation de Hopf
est tres difficile. Nous développons ce point au chapitre suivant en faisant d’abord

un rappel sur quelques techniques numériques souvent utilisées dans le cas de un
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3.5. Sur la bifurcation de Hopf pour les systemes différentiels multi - retards

ou deux retards. Ensuite, nous proposons une nouvelle approche permettant de
généraliser la détection des points de bifurcation de Hopf dans le cas de plusieurs

retards.

Conclusion

Dans ce chapitre, nous avons fait un bref apergu des systéemes dynamiques a
retards en précisant notamment la notion de stabilité pour ces systemes. Nous avons
aussi présenté la notion de stabilité entrée - état.

Afin d’étudier I'impact des retards sur la qualité des solutions nous faisons recours
a la théorie des bifurcations de Hopf. Cependant, ici, le challenge est le calcul des

points de bifurcation de Hopf que nous aborderons au chapitre suivant.
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Chapitre 4

Approches numériques des

solutions oscillatoires de Hopf

Comme nous 'avons vu dans les chapitres précédents, la bifurcation de Hopf
produit des solutions oscillatoires qui constituent une transition entre les solutions
stables et instables. Cependant la détermination complete des points de bifurca-
tion pour des systemes différentiels multi - retards est encore un sujet délicat. Il
faut noter que la détermination complete des points de bifurcation permettra leur
caractérisation pour mieux comprendre les phases transitoires des systemes dyna-
miques nécessaires en épidémiologie.

Dans ce chapitre nous développons quelques aspects numériques de calcul des
points de bifurcation de Hopf et nous présentons un algorithme pouvant mener a la

généralisation complete de ces points.
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4.1. L’équation caractéristique

4.1 L’équation caractéristique

L’étude locale de la stabilité des systemes différentiels a retards conduit a celle

d’un systeme de la forme

dx(t) -
= Aoz (t) + ; Azt — 1), (4.1)

ol A; est une matrice constante n x n pour tous les 7, 0 < 7; < 7 pour tout j et 7

fixé. L’équation caractéristique de ce systeme est alors

p(N) = det < M — Ay — iAje”j ) =0 (4.2)

j=1
Définition 4.1

L’état d’équilibre x¢ de (4.1) est dit absolument stable (c’est - a - dire stable asympto-
tiquement indépendamment des retards) si il est stable pour tous les retards T; > 0. 1l
est dit conditionnellement stable (c’est - a - dire stable asymptotiquement dépendant
des retards) si il est stable asymptotiquement pour 7; dans certains intervalles mais

non nécessairement pour tous les ;.

Rappelons a toute fin utile les résultats ci - apres. Le résultat suivant qui a été
prouvé par [58, 66] donne des conditions nécessaires et suffisantes pour la stabilité

absolue de (4.1).

Théoreme 4.1
Le systéme (4.1) est absolument stable si et seulement si

(i) Re(N) <0, ¥V X valeur propre de ZAj

=0
(ii) det <iw] — Ay — Z Aje_iw”) #0 Yw.
=0
L’hypothese (i) garantit que le systeme (4.1) avec 7; = 0 (1 < j < m) est stable

asymptotiquement, alors que 'hypothese (i7) assure que iw n’est pas une racine de
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I’équation (4.2). Clairement, le théoréeme assure qu’il ne peut y avoir de stabilité ab-
solue si I’équation caractéristique de (4.2) admet une racine imaginaire pure. Compte
tenu de (4.2), on voit bien que le théoréme est particulierement utile pour I’étude
de stabilité et de bifurcation de Hopf pour des systemes différentiels a retards. En
effet, si la condition (i7) du théoreme 4.1 n’est pas satisfaite alors 1’équation ca-
ractéristique (4.2) admet une paire de racines imaginaires pures +iwy et le systéme
(4.1), dans ce cas, n’est plus inconditionnellement stable mais peut étre condition-
nement stable. En se référant alors sur le théoreme de Rouché [1, 17], la bifurcation
de Hopf apparait, c’est - a - dire, une famille de solutions périodiques bifurquées au
niveau de I'état d’équilibre autour du point critique 75 = a £ iwy ot £iwy est racine

de I’équation caractéristique (4.2).

4.2 Cas de deux retards

4.2.1 Une caractérisation géométrique

L’équation caractéristique (4.2) peut s’écrire sous la forme
PN 7)) = po(A) + pr(N)e ™™™ + pa(N)e ™™ =0 (4.3)

ou les p;(N\); i =0,1,2, sont des polynomes. Une caractérisation complete des solu-
tions de (4.3) n’est pas toujours possible. L’équation (4.3) peut se réécrire sous la
forme

14+ a;(N)e™™ +ay(\)e™™2 =0 (4.4)

pi(\)
po@\)’

de Hopf de fréquence w, on pose A = iw solution de (4.4). Il s’ensuit que 'on doit

ou a;(\) = (¢ = 1;2). Dans le but de déterminer les solutions bifurquées

chercher w tel que

1+ ay(iw)e™™™ + ag(iw)e ™™™ = 0. (4.5)

Ces fréquences sont naturellement fonction des parametres retard, mais en représentant

— W]

les fonctions 1, ay(iw)e et a(iw)e ™™ dans le plan complexe, on déduit
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4.2. Cas de deux retards

des inégalités triangulaires :
lai (iw)| + |az(iw)]| > 1 (4.6)

et
—1 < |ay(iw)| — |az(iw)| < 1. (4.7)

La fréquence de passage de l'ensemble peut étre identifiée comme 1’ensemble de w

qui satisfont (4.6) et (4.7).

4.2.2 Détermination des bifurcations de Hopf sur la droite
To —T1 =170

Nous essayons ici de caractériser ’ensemble des points de bifurcation de Hopf
dans le plan (77, 72) sur une droite d’équation 75 — 73 = 7y ou 7y est un parametre

fixé. En substituant 75 dans (4.5), ’équation caractéristique s’écrit :
1 4 ay (iwp)e ™0™ 4 ay(iwp)e~ o (H70) — (
d’ol en posant a(iwg) = ay(iwg) + az(iwg)e” ™ on a
1+ a(iwg)e ™™ =0 (4.8)

qui est une équation a un seul retard. Ici, on remarquera que la condition nécessaire

d’existence des fréquences wy est donnée dans le plan complexe par la courbe d’équation
la(iwo)| = 1. (4.9)

Cette équation permet de caractériser les fréquences wy indépendamment du re-
tard 7. Ayant caractérisé les fréquences wy, les retards critiques sont déterminés en

séparant les parties réelle et imaginaire de (4.8). On obtient alors
1 4+ Re(a) coswory + Im(a)sinwyry = 0

—Re(a) sinwgm + I'm(a) coswyry = 0
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4.3. Un algorithme plus général : cas de plusieurs retards

De la deuxieme équation on tire

sinwgry  Im(a)

= 4.1
coswory  Re(a) (4.10)
. Im(a) . . g .
d’ot, en posant ¢ (wy) = Re(a)’ il est facile de déduire le retard critique
o actan(Ylwo)) | kT g (4.11)

Wo wo

Ainsi le diagramme de bifurcation est donné sur la figure 4.1 ci - apres.

Remarquons que les points de bifurcation auraient pu étre déterminés sur une
courbe quelconque en posant, par exemple, 75 = g(71). Mais dans ces conditions, les
simplifications permettant de déterminer explicitement ne sont plus possibles. Dans
ce cas le seul recours est de procéder par des méthodes numériques. Cependant une

question pourait se poser sur la justification du choix de la courbe.

4.3 Un algorithme plus général : cas de plusieurs
retards

Nous proposons ici une nouvelle approche de calcul des points de bifurcation.
Cette approche est basée sur une transformation reductrice qui avait déja été utilisée
pour 'optimisation globale des fonctions a plusieures variables et qui est basée sur la

notion des courbes a- dense [12]. Commengons d’abord par donner cette définition.

Définition 4.2
Une courbe définie par :

h:[0,M] — H[xi,yi] est dite a- dense dans H[azz, yi] si:

i=1 =1

Vwe H[Jci,yi], 3 0€0,M] tel que : dw,h(d)) <«
i=1
ot d est la distance euclidienne dans R", M et a des constantes positives.

a est appelé parametre de densification.
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4.3. Un algorithme plus général : cas de plusieurs retards

25 T T T T

20 25

FI1GURE 4.1 — Diagramme de bifurcation représentant les points de bifurcation sur
la droite d’équation 7o — T = Ty, To fix€ arbitrairement. Les directions de bifurcation

de la stabilité vers l'instabilité sont représentées par les fleches.
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4.3. Un algorithme plus général : cas de plusieurs retards

La généralisation de ce résultat dans R? (d > 2) peut se faire facilement en itérant

le processus. Considérons trois variables 71, 7o, 73 dans R®, on a
T = CL01 COS 91, Ty = CL¢91 sin 61, T3 — T3. (412)

En reliant 0; et 73 par une seconde spirale d’Archimede : 81 = afl cosf et 73 = af sin 6,

on obtient
71 = a*f cosfcos(af cos), T, = a’fcosBsin(abcos), 73 =alsind  (4.13)

Pour déterminer les points de bifurcation de Hopf, on cherche les racines imaginaires
pures A = +iw. Cela revient a déterminer w, un réel positif, tel que P(iw) = 0. En
posant F(w, 71, T, ..., Tm) = Re(p(iw)) et G(w, 1, T2, ..., Tm) = Im(p(iw)) respecti-
vement les parties réelle et imaginaire de p(iw), les parametres de bifurcation sont

obtenus en résolvant
F(w, 1,72, ;) =0 et G(w,T1,T2y ey Tin) = 0. (4.14)

Sous certaines hypotheses de régularité sur les fonctions F et G, il existe un point

™ = (711, ...,7,) et un réel w* = W*(7y,..., 1) tel que \* = w" soit solution de

I'équation (4.2).

Soit maintenant, pour un € > 0 fixé, h. une courbe e- dense et nous posons
F.(w,0) = F(w,ho(0)) et Ge(w,0)=G(w,h(0)). (4.15)
Supposons qu’il existe 0 et w! = w?(6*) un couple de solutions du systeme suivant
F.(w,0) =0 et G.(w,0)=0. (4.16)

Le point ( wr, ho(0Y) ) est évidemment une solution du systeme (4.15) dans lequel
he(07) est un point de bifurcation qui dépend asymptotiquement du parametre .
Notons que le systeme (4.16) a moins de variables que le systeme (4.15) et peut donc
étre plus facilement traité numériquement. En d’autres termes, une caractérisation

de ’espace de bifurcation peut étre fait si les propriétés des courbes h, sont connues.
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4.3. Un algorithme plus général : cas de plusieurs retards

FIGURE 4.2 — Un exemple d’un diagramme de bifurcation sur une courbe € - dense

dans le cas de deuzx retards.
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4.4. Un exemple

Les figures 4.2 et 4.3 ci - apres nous donne un exemple de diagramme de bifurcation
sur une courbe ¢ - dense pour un systeme a deux et trois retards. Notamment ce
concept permet d’aborder des systemes a plusieurs retards. Nous donnons ici un
schéma algorithmique de calcul des points de bifurcation pour des systémes multi -

retards.
1. Posons € > 0, et définissons h. vérifiant (4.12) et (4.13);

2. Définissons les fonctions F' et G en posant
F(w, Ty, ..., ) = Re(p(iw)) et G(w, 71, ..., Tm) = Im(p(iw)) ;
3. Définissons F. et G. vérifiant la relation (4.15);

4. Déterminons (w?, #7) solution du systéme (4.16);

egr’e

5. Posons 77 = h.(0) est un point de bifurcation.

Il faut noter que I'étape 4 peut étre faite en utilisant toutes méthodes itératives exis-
tantes. Pour ce faire, il est nécessaire de définir des valeurs de départ des parametres

w et 6, pour la résolution du systeme (4.16).

4.4 Un exemple

Pour illustrer le schéma numérique présenté ci - dessus, nous considérons I’exemple
ci - apres. Pour résoudre le systéme non linéaire (4.16), on utilise la fonction intégrée
"fsolve” de matlab. Pour cet exemple illustratif, nous avons choisi ¢ = 0.9 comme

. , . .
parametre d’approximation.
wo = 1 et 6y = 1.17 comme valeurs initiale de résolution en Matlab.

Considérons le systeme

B(t) = Agz(t) + Az(t — 1) + Asz(t — 7) (4.17)
avec
-1 0 -2 1 -1 1
A() — 5 A1 - y A2 —
1 1 -2 0 -2 0
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FIGURE 4.3 — Un exemple d’un diagramme de bifurcation sur une courbe € - dense

dans le cas de trois retards.
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4.4. Un exemple

L’équation caractéristique de (4.17) est de la forme suivante :

P(\) = A =37 =272 £ 2\ A f N A2 4207 AT |90 2AT2 +4e MnHm) 1 — .

(4.18)
C’est une équation transcendate. En se servant de l'algorithme présenté ci - dessus
on obtient le point de bifurcation w* = 1.3011, 7" = 0.3884, 7, = 0.266. La solution

du systeme (4.17) correspondante est représentée sur la figure 4.4.

62



4.4. Un exemple

x104
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.1 ' ' _1 | 1 1

0 5 10 15 2 5 XN -5000 0 5000 10000 15000

FIGURE 4.4 — Représentation de la trajectoire de solution pour [’exemple a partir
de ’état initiale x(0) = (1.301,1.3). Pour toutes les figures, sur le coté gauche, la
premiere composante de x(t) est représentée par la ligne en trait plein, tandis que la
seconde est représentée par la ligne en pointillée. La trajectoire de bifurcation et le
portrait de phase sont représentés dans les figures (a) et (b). Les figures (c) et (d)
représentent le cas de stabilité. Les figures (e) et (f) illustrent le cas d’instabilité .
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4.4. Un exemple

Conclusion

Nous avons mis en place un algorithme efficace qui détermine les points de bifur-
cation de Hopf d'un systeme d’équations différencielles multi - retards. L’approche
numeérique semble étre une approche intéressante et un outil puissant pour traiter ce
type de problemes. Il faut noter que 1'utilisation de la notion des courbes € - denses

est une originalité qui a permis convergence numérique de 1’algorithme.
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Chapitre 5

Application a un probleme

d’épidémiologie

Ce chapitre est consacré a I’étude d’un cas pratique. L’objectif visé est la valida-
tion des résultats théoriques et numériques présentés aux chapitres précédents. A cet
effet, nous nous proposons d’effectuer des simulations numériques pour un modele
épidémiologique décrivant la dynamique du VIH/SIDA. En fait, le but recherché
ici est I’analyse de 'impact des parametres retards sur la dynamique transitoire du
VIH/SIDA des états stables vers des états instables.

Plusieurs modeles ont été proposés pour décrire la dynamique de transmission
des maladies infectieuses (voir [20, 26, 50, 67] par exemple). Dans [14, 23], les auteurs
proposent une étude des modeles SI-SIR pour décrire une dynamique de transmission
dans laquelle la population humaine est supposée constante. Dans [24], I'auteur
n’utilise pas un taux d’infection classique dans la transmission de 'infection, seule
la stabilité globale de 1’équilibre endémique est traitée. Nous nous intéressons, ici,
plutot & un probleme de 1’évolution de ’état des sujets atteints du VIH/SIDA soumis

ou non a un traitement thérapeutique.
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5.1. Parametres déterminants de la dynamique du VIH/SIDA

5.1 Parametres déterminants de la dynamique du

VIH/SIDA

Afin de mieux analyser notre approche dans le cadre de I'infection du VIH/SIDA,
nous décrivons dans cette section quelques parametres expliquant ’évolution du

virus dans I'organisme.

5.1.1 Le systeme immunitaire

Le systéme immunitaire est un ensemble structuré d’éléments (cellules, molécules,
...) qui ont pour charge la défense de I'organisme contre différents agents nuisibles
(virus, bactéries, parasites . . .). Une réponse immunitaire est une réaction du systeme
suite a une agression de 1’'organisme et qui s’exprime principalement par des actions
des cellules lymphocytes T CD4" et CD8" qui sont des catégories de globules

blancs.

5.1.1.1 Les lymphocytes T' CD4"

Les lymphocyte CD4" (T4) ou Ty (helper) (le T pour Thymus ') jouent un role
important dans la réaction immunitaire car elles sont responsables de la coordina-
tion et de l'activation des autres agents T8, des macrophages, ou la production des
cytokinese ? par exemple. Elles sont produites par le thymus, et comme leur nom
I'indique (helper), elles aident & activer la réaction immunologique en présence du
VIH. Lorsque le virus est apercu par les cellules C D47, ces dernieres entrent en pro-
lifération et, selon I'environnement dans lequel elles se trouvent, elles déclenchent :

— une immunité a médiation humorale par la production des anticorps,

— et une immunité a médiation cellulaire qui stimule les cellules CD8' dont le

role est la destruction des cellules infectées.

1. Organe du systéme immunitaire responsable de la production des lymphocytes T
2. Hormones du systeme immunitaire qui stimulent les cellules de la réponse immunitaire.
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5.1. Parametres déterminants de la dynamique du VIH/SIDA

Les cellules Ty considérées comme la clé de la réaction immunitaire sont cibles de
I'infection par le virus VIH qui les considére comme un environnement adéquat pour
accomplir son cycle de prolifération. Leur destruction par le VIH paralyse la défense

immunitaire de sa source [53].

5.1.1.2 Les lymphocytes T' CD8"

Les cellules lymphocytes T C' D8 contiennent une protéine C' D8 sur leurs mem-
branes, appelée également CT L pour leur pouvoir toxique. Quand une cellule CD4™"
est infectée par le VIH, elle présente sur sa membrane un antigene particulier. Ce
dernier sera considéré comme un signal d’activation des cellules C'D8 dites naives

qui deviennent actives.

5.1.2 Le virus de I'immunodéficience humain (VIH)

C’est un rétrovirus qui détruit le systeme immunitaire humain en infectant les
cellules CD4 qui activent la défense de 'organisme et conduit lentement et apres
une longue période d’incubation au Syndrome d’Immunodéficience Acquise (SIDA)
qui est la complication la plus dangereuse de l'infection par le VIH ou le systeme
immunitaire atteint un état affaibli et devient cible des différentes maladies oppor-
tunistes.

Contrairement aux différents organismes cellulaires vivants constitués d’ADN 3,
le VIH appartient aux rétrovirus c’est - a - dire il est constitué d’un simple brin

d’ARN * en double exemplaires, plus des protéines nécessaires & sa réplication.

3. ADN : Acide désoxyribonucléique. Elle constitue la molécule support de l'information
génétique héréditaire.
4. ARN : Acide ribonucléique. Ce sont des molécules constituées par I’assemblage de ribo-

nucléotides, qui possedent de trés nombreuses fonctions dans la cellule.
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5.1. Parametres déterminants de la dynamique du VIH/SIDA

Lymphocyte T4

FI1GURE 5.1 — Une présentation du cycle du VIH dans l'organisme.

68



5.2. Présentation d’'un modele entrée - état de la dynamique de I'infection VIH

5.2 Présentation d’un modele entrée - état de la
dynamique de l’infection VIH

Il existe dans la littérature beaucoup de modeles mathématiques qui cherchent a
donner une caractérisation de la dynamique de I'infection au VIH lors une thérapie.
Plusieurs chercheurs ont tenté d’utiliser ces modeles pour estimer le temps nécessaire
de I'éradication du virus. Ces prévisions impliquent des périodes qui s’étendent au -
dela de ce qui est approprié pour 'approximation de la dynamique non linéaire
par un modele linéaire. Dans [9], les auteurs soutiennent que des modeéles non
linéaires plus complexes sont nécessaires pour décrire avec précision a long terme
la décroissance virale. Des efforts récents [6] avec des données in vitro suggerent
I'importance de la modélisation des retards distribués avec une certaine prudence.
L’incorporation de ceux - ci dans les modeles peut conduire a des meilleures esti-
mations de la durée de vie du virus détectée sur des patients subissant une multi -

thérapie.

5.2.1 Variables du modéele

Le modele que nous nous proposons d’étudier a été élaboré d’une part par Cal-
laway et Perelson [11], et d’autre part, par Bonhoeffer [9] qui y a ajouté un com-
partiment qui décrit la dynamique de la réponse immunitaire. Il décrit ’évolution
de linfection VIH dans 'organisme dans le cadre d’'un traitement thérapeutique.
Le diagramme compartimental permettant de générer les équations du modele est
présenté sur la Figure 5.2. Les éléments déterminants de cette schématisation sont :

— Les cellules cibles non infectées de type 1 produites par le thymus. Ces cellules

possédent sur leurs membranes une protéine C D41 qui permet de reconnaitre
la présence d'un antigene (virus) dans 'organisme ;

— les cellules cibles non infectées de type 2 appelées aussi macrophages. Ces

cellules sont produites par la moelle osseuse qui sert a la destruction des cellules
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5.2. Présentation d’'un modele entrée - état de la dynamique de I'infection VIH

infectées ;
— la réponse immunitaire qui est la mise en route des deux types des cellules
infectées ;
— les cellules de type 1 infectées;
— les cellules de type 2 infectées;
— les virus (virion infectieux) libres, car le patient prend des inhibiteurs qui vont
empécher certains virus d’agir;
— les virus non infectieux;
— le facteur de traitement di a la prise des inhibiteurs RT'I (médicaments
empéchant les infectées de se répliquer en virions) ;
— le facteur de traitement du a la prise des inhibiteurs PI (médicaments empéchant
les virions de devenir infectieux).
Ce modele qui prend en compte ces 9 facteurs permet de comprendre les échanges
entre les compartiments des cellules non infectées, virus, cellules infectées et réponse
immunitaire. Les variables explicatives intervenant dans ce modele sont :
— Ty(t) : Concentration des cellules cibles T ;
— T5(t) : Concentration des cellules cibles Ty ;
(t) : Concentration des cellules infectées T7 ;
— T5(t) : Concentration des cellules infectées T ;
— Vi(t) : Concentration des virus infectieux ;
— Vii(t) : Concentration des virus non encore infectieux;

(
— E(t) : Concentration des cellules constituant la réponse immunitaire.
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5.2. Présentation d’'un modele entrée - état de la dynamique de I'infection VIH

Parametres Description

A1 Le taux de production de cellules cibles de type 1

dy Le taux de mortalité de cellules cibles de type 1

€ L’efficacité des traitements de la population 1

k1 Le taux d’infection de la population 1

Ao Le taux de production de cellules cibles de type 2

do Le taux de mortalité de cellules cibles de type 2

f Réduction de 'efficacité du traitement dans la population 2

ko Le taux d’infection de la population 2

) Le taux de mortalité des cellules infectées
my Le taux de clairance immunitaire induite par la population 1
mso Le taux de clairance immunitaire induite par la population 2
Ny Virions produits par cellules infectées

c Le taux de mortalité naturelle par le virus

p1 Nombre moyen de virions infectieux de cellules de type 1

P2 Nombre moyen de virions infectieux de cellules de type 2
AE le taux de production immunitaire effectrice

be Le taux de natalité maximale pour effecteurs du systemes immunitaire
K, Le taux de naissance pour effecteur immunitaire

dg Le taux de mortalité maximale pour effecteurs du systéeme immunitaire
K, Le taux de mortalité pour effecteur immunitaire

0p Le taux de mortalité naturelle pour les effecteurs du systeme immunitaire

TABLE 5.1 — Parameétres du modéle.
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FIGURE 5.2 — Un modeéle compartimental présentant la dynamique des échanges lors

d’une infection VIH ainsi que les directions de controle médicamental.
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5.2. Présentation d’'un modele entrée - état de la dynamique de I'infection VIH

5.2.2 Dérivation des équations du modele sans retard

On fait 'hypothese que deux types de médicament ont un effet de controle. On
admet alors que le controle de la quantité de médicament RTI5 dans le sang est
décrit par

51@) = €1u(t), €1 € [0, 1] (51)
et celle des médicaments PI % par
ég(t) = 52u(t), g € [0, 1] (52)

ou u(t) est une fonction de controle. Compte tenu des échanges entre compartiments
(figure 5.2), les équations décrivant les variations des concentrations des cellules

cibles T; (i = 1, 2) dans le sang peuvent étre exprimées par

dT;
= M—diTi - (1= a0k VT, (5.3)
dT:
d_tQ = A —doTy — (1 — f&1 () ko ViTs, (5.4)

ou
— A1 (resp. A\z) est le taux de production des cellules T} (C'D4") (resp. Ty (ma-
crophage)) par jour;
— dy (resp. dg) désigne le taux de mortalité naturelle des cellules Ty (resp. T5)
par jour;
— ky (resp. ks) est le taux avec lequel les virus infectieux attaquent les cellules
Ty (resp. Ty).
Les effets du médicament se mesurent alors par les facteurs 1 — &(t) et 1 — f&,(¢).

Par contre les variations des concentrations des cellules T} (resp. T3) infectées dans

5. Les inhibiteurs de la transcriptase inverse, enzyme responsable de la multiplication des génes

viraux dans les cellules sanguines.
6. Les inhibiteurs de la protéase, qui participe a la finition des virus produits par les cellules

infectées.
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le sang sont exprimées par

dT
dtl = (1 —&@)kViTy — 0TF — m ETY, (5.5)
dTy
df = (1 — fa (t)koViTy — 0Ty —moETy,  f €0, 1], (5.6)

ol my (resp. my) représente le taux de mortalité journalier des cellules T} (resp. T5)
infectées du a leur destruction par les macrophages et J désigne le taux de mortalité
naturelle des cellules infectées. La concentration des virus infectieux dans le sang

est décrite par

dvi

S = (1= NO(T4T5) ~eVi-[(1-2(0)n 10k T+ (1= f21(6)p1 s ] Vi

(5.7)
ou Np désigne le taux de productivité des virus par les cellules T et T, infectées,
¢ le taux de mortalité naturelle journalier des virus infectieux, p; caractérise la
capacité d’anti-rétroviraux empéchant la réplication des cellules 77 et py représente
le coefficient avec lequel la RT'I empéche la replication en virions des cellules T .
Dans 'équation (5.7), 10° a été introduit pour convertir les microlitres en millilitres
car 'unité de charge virale est la copie par millilitre. La variation des virus non

infectieux est quant a elle décrite par I’équation suivante

dVnr
dt

= 52(t)103NT6(T1* + TQ*) — CVN[. (58)

La description de la réponse immunitaire est donnée par 1’équation

dE b(Tr + T) dp(T7 + Ty)
— =g+ E— E —0pE 5.9
dt P (Tr+ T+ Ky (T +T3) + Ky b (5.9)

ou Ag est le taux de production naturelle des cellules qui constituent la réponse
immunitaire par jour, bg désigne le taux de production des cellules qui composent la
réponse immunitaire due a la prolifération des cellules 77 et 17 ; di représente le taux
d’élimination des cellules constituant la réponse immunitaire, 0z le taux de morta-
lité naturelle des cellules de la réponse immunitaire. K, représente la constante de

saturation pour la naissance effectrice immunisée tandis que K, désigne la constante
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de saturation pour la mort effectrice immunisée.
Si on désigne par X¢ = (Tf, Ts, T, Ty°, VF, Vi, E€)T Tétat d’équilibre, alors

compte tenu des équations du systeme, on a

M — di TS =k VETE =0 (5.10)

Ao — dyTs — ko VTS =0 (5.11)

ki VETE — 8T — my BT = 0 (5.12)

koVETS — 8Ty — mo BTy = 0 (5.13)
Npd10°(T7° + T3°) — VE — [p10°ka Ty + pal0°ky T3]V = 0 (5.14)
103 NpS(T)° + Ty °) — Vi, =0 (5.15)

gt I e dp( 1Y) pe 5ope (5.16)

(L) + 1 (I + 1) + Ko
On notera que ces équations d’équilibre sont calculées en posant &;(t) = 0,
1 = 1, 2. L’état d’équilibre obtenu est donc celui d’'un patient non soumis a une

action thérapeutique. Apres quelques calculs, il vient

)\1 )\2

T = "~ 76 = — =2 . 5.17
Yd ke Ve 2 dy + KV (5.17)
e e c(dy + kiVE) + Mk110%p1  Aoko10%py ]V
! 2 dy + k V¢ dy + koVE | H,y (5.18)
AE
B¢ = — *e *,€ *e *,€ 5.20
T+ L+ K (T + )+ Ke
oll on a posé
Hy, = 10°Nr§ (5.21)
Nous avons aussi
*,€ lele *,€e k2T28
177" = ———V¢ T, = ———V7 . 5.22
1 6+m1Ee I 2 (5+m2E6 I ( )

5



5.2. Présentation d’'un modele entrée - état de la dynamique de I'infection VIH

Ainsi des relations (5.17) et (5.20), il s’ensuit que 77 et T5*° dépendent de V.

De la relation (5.22), on peut tirer

VY. (5.23)

*,e *,e lef kQT;
T +Ty¢ =
1 < 0 +miEe 6+ myEe

Les égalités (5.18)-(5.23) permettent de tirer la valeur de V;°. Par conséquent, les
variables restantes Ty, Ty, T7°°, T5°, E° se déduisent aisément puisque exprimées

en fonction de V7.

5.2.3 Modeéle a retard

Afin de mieux comprendre I'impact des traitements sur la dynamique de I'in-
fection VIH, nous introduisons dans le modele mathématique précédent des retards
intracellulaires :

— le premier retard 7, est défini comme le temps de 'entrée du virus dans la cel-

lule cible. C’est I'étape de la transcriptase inverse qui avait été déja considérée
dans [18];

— le deuxieme retard 7 représente le temps entre I’entrée du virus et la produc-

tion de nouveaux virus;

— le troisieme retard 73 correspond au temps nécessaire pour qu’un nouveau virus

devienne infectieux et

— le quatrieme retard 74, représentant le temps nécessaire pour qu’un virus nou-

vellement infecté devienne mur.
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Nous pouvons alors réécrire les équations du modele comme suit :

% = M —diTh — (1= &)k Vi(t —m)Ti(t — ),

% = X —doTr — (1= fai(t)kaVi(t — 1) Ta(t — 72),
dj;f = (1—&t))kViTy — 6T (t — 73) — mi ETY,

df = (1 - fa)keViTy — 0T5(t — 1) — moETy,

% = (1 —&(t)Npdl0* (T} + Ty) — cV;

— (1= &) p110°k, Ty + (1 — f&1(1)) p210° ko To) V7,

d‘;tw = S()10°Nro (T} + T3) — Vg
% = Ap+ (leff}:g JTE;Q,E _ (éEiT;;—i)— Zﬁ‘;(dE B,

(5.24)
(5.25)
(5.26)
(5.27)

(5.28)

(5.29)

(5.30)

Nous souhaitons donc étudier 'impact des retards 7;, © = 1, 2, 3, 4 sur des états

asymptotiques au voisinage de 1’équilibre. En linéarisant les équations (5.24) - (5.30)

autour d'un point d’équilibre, on se ramene a un systeme

dX(t) .
— = AX () + Zl AX(t—1)

ou l'on a posé

(5.31)

T
X(t) = <T1—Tf> T-T5, I7 -1V 5, T =Ty °, Vi—= Vi, Ve = Vi, E—Ee>

avec

T
X = <1T: Igv IT’ea 75767 V?i ‘66[7 lg@)

7



5.2. Présentation d’'un modele entrée - état de la dynamique de I'infection VIH

point d’équilibre et ou les matrices A; sont définies par

—d, 0 0 0 0 0 0

0 —dy 0 0 0 0 0

0 0 —mE° 0 0 0 0

Ao = 0 0 0 —meE® 0 0 0
asy  Qaso 0 0 ass 0 0

0 0 0 0 0 — 0
0 0 0 0 0 0 arn

avec

as1 = —(1 —&1(t))p110°k, V5
az = —(1 — f&1(t))pa10%ka V7

a5 = —C — (1 — él(t))pllosk:le — (1 — fél(t))pglogszf,
be(T7 +13) dp(T7 +717)

ar; = - —0p.
T T T+ Ky, (Tr+TH+ K, °

—(=&a@)kVvy o —(1=&a@)k1y 0

o o o o o o
o o o o o o
o o o o o o o
o o o o o o o
o o o o o o
o o o o o o
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5.3. Simulations numériques

0 0 0 0 0 0 0
0 —(1— fa(t)ksVE 0 0 —(1— far(t)koTE 0 0
0 0 00 0 0 0
Ay=10 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 00 0 0 0
0 0 00 0 0 0
0 000O0GO0O 000 0 000
0 000O0GO0O 000 0 00O
—§ 000000 000 0 00O
As=1 0 000000 |, A=]000 —500 0
0 000O0GO0O 000 0 00O
0 000O0GO0O 000 0 00O
0 000O0GO0O 000 0 00O

L’équation caractéristique de (5.31) s’écrit donc
P()) = det ( M — Ay — Aje™™ — Age ™™ — Az — Ay ) =0. (5.32)

L’étude numérique qui va s’en suivre, comme nous ’avons fait aux chapitres trois

et quatre, est entierement basée sur celle des racines de I'équation (5.32).

5.3 Simulations numériques

Pour nos simulations, nous avons considéré le cas d’un patient qui a été suivi
au Massachussets General Hospital durant la période allant de 1996 a 2004. Ses
parametres identifiés dans [10] sont consignés sur la table 5.2. Compte tenu des
équations d’équilibre (5.10) - (5.23), en posant £;(t) = 0, i = 1,2 on obtient deux
états d’équilibre, I'un correspond a un cas de non infection et 'autre a celui d'un

patient infecté. Les valeurs d’équilibre sont consignées sur la table 5.3.
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A= dy = €1 = ki = Ay = dy =
1.096 1073 0.75 2.407 x 1077 0.10099 0.022109
f= ko = 0= myp = My = Np =
5.3915 x 1071 | 5.5290 x 10~* | 0.18651 0.024385 0.013099 19.41
c= p1 = p2 = Ag = bp = Ky =
4.784 1 1 9.9085 x 1073 | 1.299 x 1072 | 0.39087
dg = K, = 0p = €9 =
0.010213 0.83790 0.070299 0.75

TABLE 5.2 — Parameétres d’un patient identifiés par lissage de données cliniques de

1996 a 2004.

Parametre d’équilibre

1¢" point d’équilibre (FQ1)

2°" point d’équilibre (EQ)s)

T7 (cellulles/pl)
Ts (cellulles/pl)
Ty¢ (cellulles/ul)
Ty (cellulles/ ul)
VE (copies/ml)
Vi (copies/ml)
E° (cellulles/ ul)

1096
4.5678
0
0
0
0
0.1409

814.6232
0.1238
1.4799
0.5213

1463.7949

0
0.1487

Pas d’infection

Déja infecté

TABLE 5.3 — Les points d’équilibre du systeme (5.24)-(5.30) relatifs a un patient

dont les parametres sont consignés sur la table 5.2.
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Notre objectif, ici, est d’estimer les états transitoires du patient en fonction des

parametres retards puis de simuler 'impact des traitements autour de ces états.

5.3.1 Estimation des parametres de bifurcation de Hopf

Considérant 'approche développée au chapitre quatre, nous posons

1 = Tr1co80q, Ty = r18in 6y, ry = ab
T3 = 7T9c0s0s, T4 = T98in By, r9 = aby (5.33)
01 = rcosb, Oy = rsinf, r=af 0> 0.

Ce qui nous permet d’exprimer les quatre parametres retards 71, 7, 73, T4 en

fonction de la seule variable 6. Nous obtenons alors

7 = a*fcosfcos(ab cosb)
5 = a*0cosfsin(ab cos )
5 = a’fsind cos(afsinf) (5.34)
7, = a*@sinfsin(alsinb).

On vérifie aisément que les équations (5.34) définissent une courbe a - dense dans 1’es-
pace R* des parametres retards. A toute fin utile, pour notre simulation numérique
nous avons considéré :

a=0.9.

Cette valeur est prise aussi petite que possible pour permettre d’avoir une courbe qui
remplisse R? aussi pres que possible. Pour I'ensemble de nos simulations I’étude lo-
cale se fait autour d’un état d’équilibre infectieux table 5.3 et ’état initial considéré
est celui d'un patient infecté dont les parametres sont donnés sur la table 5.2. L’appli-
cation de I'algorithme développé au chapitre quatre pour différentes valeurs initiales

de 6 nous permet de déterminer quelques valeurs simulées des parametres retards
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de Hopf. Des exemples de simulation de ces parametres sont présentés sur les tables

5.4, 5.5 et 5.6.

5.3.2 Simulation des états transitoires pour un patient in-

fecté

En considérant les conditions initiales et d’équilibre de la section précédente nous
déterminons les états correspondant aux divers parametres retards des tables 5.4 -
5.6. Ces états sont représentés sur les figures 5.5 - 5.9. Sur chacune d’elles nous avons
représenté un état stable et un état instable correspondant aux parametres retards
proches du point de bifurcation de Hopf.

La figure 5.5 représente la simulation d’un cas ou le patient n’est pas soumis a
un traitement thérapeutique. Ce qui correspond a un controle nul (&;,(t) =0 Vi=
1,2). Les figures 5.6, 5.7, 5.8 et 5.9 correspondent au cas ou le patient est soumis a
un traitement thérapeutique (&;(t) # 0,V i = 1,2). A cet effet deux scénarios ont
été considérés pour le controle thérapeutique de I'infection (voir figures 5.3 et 5.4).
Le premier protocole (figure 5.3) indique une interruption du traitement structurée
progressivement entre le 30 eme jour et le 60 éme jour et qui reprend le traitement a
partir du 61 éme jour jusqu’au 75 eéme jour. Par contre, au second protocole (figure
5.4) linterruption du traitement se fait progressivement entre le 30 éme jour et le

60 eme jour.
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Parametres retards | Stabilité | Bifurcation de Hopf | Instabilité
T 8.05 9.0574 9.765
To 1.123 1.7493 2.957
T3 0.50 0.5039 1.12
T4 0.234 0.9647 1.321

TABLE 5.4 — Parameétres retards obtenus par résolution de l’algorithme avec la valeur

initiale 0 = 9.279.

Parametres retards | Stabilité | Bifurcation de Hopf | Instabilité
T 7.60 8.6604 9.650
To 1.80 2.8028 3.921
T3 0.0052 0.0078 2.052
T4 1.56 1.5642 2.756

TABLE 5.5 — Parameétres retards obtenus par résolution de [’algorithme avec la valeur

iitiale 0y = 9.254.

Parametres retards Stabilité Bifurcation de Hopf | Instabilité
T 0.47 0.0947 2.09
To 0.01 0.0101 1.01
T3 0.013 0.0113 1.13
s 1.4285 x 10~* 1.4285 x 107* 2.4285 x 1074

TABLE 5.6 — Parameétres retards obtenus par résolution de l’algorithme avec la valeur

initiale Oy = 0.076.
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10 20 36 40 56 66 ;O 86 96
Temps (Jours)
FIGURE 5.3 — Scénario 1

100

un protocole de traitement
VIH/SIDA sur une durée de 100 jours.

imposé a un patient du
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A

\;/ 0.5
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10 20 30 40 50 60 70 80 90 100
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FIGURE 5.4 — Scénario 2

VIH/SIDA sur une durée de 100 jours.

un protocole de traitement imposé a un patient du
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FIGURE 5.5 — Evolution des concentrations des cellules C DAY (Ty) et (Ty) par rapport
a leurs wvaleurs d’équilibre Ty et Ty et la Variation des virus infectieux (V7) par
rapport a sa valeur d’équilibre V;° dans le cas ;(t) = 0. Ces simulations sont relatives
auz parametres retards de la table 5.4. Les phases transitoires sont représentées de
la gauche vers la droite (la phase asymptotiquement stable vers la phase instable) et

les figures au centre correspondent au parametre de bifurcation de Hopf.
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FIGURE 5.6 — Evolution des concentrations des cellules C DAY (Ty) et (Ty) par rapport

a leurs valeurs d’équilibre TY et Ty et la Variation des virus infectieux (Vi) par

rapport a sa valeur d’équilibre Vi dans le cas £;(t) #Z 0. Ces simulations sont relatives

aux parametres retards de la table 5.4. Les phases transitoires sont représentées de

la gauche vers la droite (la phase asymptotiquement stable vers la phase instable)

et les figures au centre correspondent au parameétre de bifurcation de Hopf selon le

protocole de traitement de la figure 5.3 (Scénario 1).
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FIGURE 5.7 — Evolution des concentrations des cellules C DAY (Ty) et (Ty) par rapport

a leurs wvaleurs d’équilibre Ty et Ty et la Variation des virus infectieux (V7) par

rapport a sa valeur d’équilibre Vi dans le cas &;(t) # 0. Ces simulations sont relatives

auz parametres retards de la table 5.4. Les phases transitoires sont représentées de

la gauche vers la droite (la phase asymptotiquement stable vers la phase instable)

et les figures au centre correspondent au parameétre de bifurcation de Hopf selon le

protocole de traitement de la figure 5.4 (Scénario 2).
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FIGURE 5.8 — Evolution des concentrations des virus infectieuz (Vy) par rapport a sa

valeur d’équilibre Vi dans le cas €;(t) # 0 pour les paramétres retards de la table 5.5.

Les figures 5.8 (a), (b) et (¢) concernent l’évolution des concentration relativement

au protocole de traitement de la figure 5.3 (Scénario 1) et les figures 5.8 (d), (e) et

(f) celle du protocole de traitrement de la figure 5.4 (Scénario 2).
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FIGURE 5.9 — Evolution des concentrations des virus infectieur (Vy) par rapport a sa

valeur d’équilibre Vi dans le cas g;(t) # 0 pour les paramétres retards de la table 5.6.

Les figures 5.9 (a), (b) et (c) concernent l’évolution des concentrations relativement

au protocole de traitement de la figure 5.3 (Scénario 1) et les figures 5.9 (d), (e) et

(f) celle du protocole de traitement de la figure 5.4 (Scénario 2).
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5.3.3 Remarques et discussions

Nos simulations ont été menées pour un cas d’'un patient infecté dont 1’état initial
est proche de son état d’équilibre infectieux. Apres avoir déterminé les parametres

de bifurcation de Hopf, nous avons envisagé trois scénarios.

Dans le premier scénario, le patient n’est pas soumis a un traitement pouvant
controler I’évolution de son infection. La simulation des phases transitoires de la
dynamiques de sa maladie est présentée sur la figure 5.5 et elle correspond aux pa-
rametres retards de la table 5.4. On peut remarquer que le caractere transitoire est
tres accentué pour les cellules 75 (figure 5.5 (d), figure 5.5 (e) et figure 5.5 (f)) et pour
la charge virale V; (figure 5.5 (g), figure 5.5 (h) et figure 5.5 (i)). Ceci montre bien
qu’une petite perturbation autour du parametre retard de Hopf permet de ramener
le patient de son état stable (figure 5.5 (d) et figure 5.5 (g)) a son état instable (figure
5.5 (f) et figure 5.5 (i)). Dans cette situation d’instabilité il apparait qu’en ’absence
de traitement 1’état du malade s’aggrave sérieusement a partir du 50 eme jour d’'un
état proche de I’équilibre. Dans le cas de stabilité et du point de bifurcation, 1'état
du malade reste stationnaire autour de 1’équilibre mais une petite perturbation des

parametres retards peut permettre de basculer vers un état instable.

Dans le deuxieme et troisieme scénarios le patient est soumis a un protocole de
traitement (figures 5.3 et 5.4). Les différentes simulations des états du patient en
fonction des parametres retards sont alors présentées en figure 5.6, 5.7, 5.8 et 5.9.
Les figures 5.6 et 5.7 montrent que pour les parametres retards de la table 5.4, le
traitement se révéle plutot efficace dans la région de stabilité et assez efficace pour
les parametres de Hopf aussi bien pour le premier protocole de traitement que le
deuxieme. Sur les figures 5.8 et 5.9 on y compare les charges virales selon les deux
protocoles de traitement de notre simulation relativement aux parametres des tables

5.5 et 5.6. Pour les parametres de la table 5.5 la figure 5.8 montre que les deux pro-

90



5.3. Simulations numériques

tocoles de traitement sont plutot efficaces dans la région de stabilité et qu’il y a
échec thérapeutique lorsqu’on bascule vers le point de bifurcation de Hopf. Pour les
parametres de la table 5.6, la figure 5.9 montre que le traitement est efficace aussi

bien dans la région de stabilité que dans celle qui est instable.

Enfin, en conclusion, on peut noter que d’autres simulations avec d’autres types
de protocoles de traitement peuvent donner des résultats tres différents. Toutefois
ces simulations peuvent donc permettre d’expliquer 1’echec ou le succes d'un proto-
cole de traitement et par voie de conséquence d’effectuer un choix en fonction des

parametres retards du patient.
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Chapitre 6

Conclusion générale et

perspectives

Les travaux que nous avons menés au cours de cette these avaient pour objectif
fondamental de donner une caractérisation des points de bifurcation de Hopf pour
les systemes dynamiques multi - retards. L’approche considérée tout au long de ce

travail repose principalement sur la notion de la stabilité des systemes multi - retards.

Le premier chapitre a permis de situer notre étude, en dressant un état de l'art
sur les systemes dynamiques multi - retards. Par ailleurs, nous avons aussi rappelé
les résultats fondamentaux sur la stabilité des systemes dynamiques multi - retards.
Notamment nous avons porté une attention particuliere sur la théorie des bifurca-
tions de Hopf pour 'analyse de la stabilité des systemes dynamiques multi - retards.
Notre contribution essentielle apparait au niveau du quatrieme chapitre de cette
these qui nous a conduit a 1’élaboration d’un algorithme de calcul des points de

bifurcation de Hopf dans le cas de plusieurs retards.

Nous avons simulé nos résultats théoriques sur un probleme de controle thérapeutique

du VIH/SIDA. Dans le cadre de cette étude, il nous a été donc possible d’établir
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I'existence d'un état d’équilibre infectieux pour un patient, c’est - a - dire un état
ou le malade est infecté mais est dans la situation d’un porteur saint. A 'aide de
la théorie de bifurcation de Hopf, nos simulations ont permis de calculer des pa-
rametres pour lesquels toute perturbation permet de basculer d’un état stable a
un état instable en passant par une phase transitoire de Hopf. En simulant avec
différents protocoles de traitement nous avions mis en évidence I'impact de retards

sur 'efficacité des traitements.

Les résultats obtenus dans ce travail ouvrent quelques perspectives qui méritent
qu’on s’y attele dans nos futurs travaux. Nos travaux ont permis certes de développer
une approche plus générale de calcul des points de bifurcation de Hopf dans le cadre
des systemes différentiels a retards mais la caractérisation complete qui consiste
aussi bien a déterminer ’espace des points de bifurcation ainsi que leurs directions

n’a pas été développée.

D’un point de vue applications, les parametres de Hopf permettent d’expliquer les
transitions entre états stables et instables. Cependant I'identification physique des
parametres retards se révéle étre un sujet tres difficile qu’il conviendra d’aborder

avec attention dans nos futurs travaux de recherche.
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The Hopf bifurcation is known to be important for the stability study of
parametric dynamical systems, in the sense that it provides oscillators
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delays differential systems. The proposed algorithm is based on an

approach that consists in using dense curves of R” to bring the original
problem to a simple one-dimensional problem. Some examples,
illustrating the use of the method, are included.

1. Introduction

To obtain a deep and clear understanding of dynamic systems the worthwhile
way is to investigate delay models. In practice, most of them are described by some
nonlinear differential systems with delays. In general, it is difficult to analyze the
stability of such systems due to the existence of multiple delays which leads to
calculating zeros of multi order transcendental equations [2, 7]. As it has early been
mentioned, the difficulty of determining bifurcation parameters is then closed to the
one of searching roots of transcendental equations. Here, we are interested in the
computation of the Hopf bifurcation points for the following multiple delayed linear
differential system

m
= Ax+ " Bix(x), (1)
i=1

where x,(t;) = x(r — T;), coefficients T; are delay parameters that are supposed to

be positive and, where A and B; are given matrices.

It is previously demonstrated in [2, 5, 6] that the stability or the instability of the
system (1) depends on roots properties of the following characteristic equation

m
P(A) = det| M — A — Z Bie™Mi | =0. )
i=1

Even if there is no general results that characterize the equation roots (2), its
computation still remain a very important research subject. However, an important
result that establishes condition of existence of the Hopf bifurcation given by Ruan
and Wei [7], precisely shows that parameters from which the characteristic equation
(2) admits pure imaginary roots are Hopf bifurcation points, i.e. the parameters which

provide periodic oscillations solutions.

There are few papers which discuss the bifurcation of delayed linear systems for

lower number of delays. We can refer to [1]. The most studied cases are those for
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which the number of delays is two. When the number of delays is more than two, the
stability and bifurcation analysis become more and more difficult. In this work we
present a numerical scheme that, in a more general case, would permit us to compute
Hopf bifurcation points in an easier way.

In this paper, we will proceed as follow: in Section 2, we present the numerical
scheme for computing the Hopf bifurcation parameters for the system (1). Numerical
simulation examples are given in Section 3, then the conclusion in the last section.

2. Numerical Scheme

We investigate here on a new approach for computing bifurcation points. This
approach is closed to that of the Alienor transformation [4] which has been
previously used to global optimization of multi variables functions. Firstly, we need
the following definition.

Definition 2.1. A subset S of R” is said to be o dense in R” if for all

M e R”", there exists N € S such that:
dM,N)<a
where d(M, N) denotes the Euclidian distance between M and N.

We now present the following result proved in [4].
Lemma 2.2. The Archimedean curve defined by the following polar equation

r = B is wo-dense in R2.

The generalization of this result to the space R? can be easily done by an

iteration process. Considering variables x;, x,, X3 in R3 we set
X = ael COoS 91, Xy = Otel sin 91, X3 = X3. (3)

Let connect 6; and x3 by the following: 6, = a0 cos® and x3 = 0O sin 6. Then,

we obtain
X = %0 cos 0 cos(aB cos 0), x, = %0 cos 0 sin(0d cos 0), x3 = 0B sin 6. (4)

This last mapping can be easily shown to be o-dense curve in R3. Insucha way we

construct iteratively a ort- dense curve in RY.
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To determine Hopf bifurcation points, as mentioned above, we proceed to
A = i@ where i denotes the complex number that satisfies i 2= -1, and to compute
the real ® such that P(im)=0. Let set F(w, Ty, ..., T,,) = Re(P(i®w)) and
G(o, 14, ..., T,,) = Im(P(iw)) respectively real and imaginary parts of P(i®). Then
bifurcation parameters are obtained by solving the system

F(®, Ty, ..., T,,) =0 and G(w, 7, ..., T,,;) = 0. 5)

Clearly, for some appropriate regular assumptions on functions F and G, there
exists a point T° = (1}, ..., T,,) and areal ®" = ® (1], ..., T),) such that X" = i®"
is a solution of the equation (2).

Now, let us show how computing bifurcation points using the o-dense curves
approach. For a fixed approximated € > 0, we let A to be a €-dense curve and we

set
Fu(0, 8) = F(, h,(8)) and G (w, 8) = G(w, he (6)). ©6)

Let assume that there exists 0; and @, = 0¢(0;) a solution couple of the

following equations system
Fy(®, 8) = 0 and G,(a, 8) = 0. )
The point (y, he(8;)) is obviously a solution of the equations system (6) in

which hg(ez) is a bifurcation point that depends of the parameter €. Note that

systems of type (7) are easier to compute than the system (6). In other words, a
characterization of the space of bifurcation points can be done knowing properties of

curves hg. In our forthcoming paper, we will have to study this space and we hope to

be able to obtain outstanding results as € — 0.

Then, system (7) gives us an algorithm scheme for computing bifurcation

parameters of the system (1) that we summarize as follows:

1. Set € > 0, and define /. thanks to the iterative process given by relations (3)
and (4);

2. Define functions F and G by letting F(w, 1, ..., T,,) = Re(P(i®)) and
G(o, Ty, ..., T,,) = Im(P(iw));
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3. Define Fg and G, thanks for relation (6);
4. Determine (u); 9:) solution of the system (7);

5.Set T, = h.(0;) as a bifurcation point.

We should note that the step 4 can be done using any existing iterative method.
For that purpose it is required to define starting values of parameters ® and 6, for the

resolution of the system (7).

3. Test Examples

To illustrate the numerical scheme presented above we have considered two test
examples. For our numerical computation we have used the Matlab built-in function

“fsolve” to solve the system (7).

For both test examples we have chosen as approximation parameter € = 0.9. As

initial guess for the Matlab solver, we took the values w, =1 and 6, =1.17.

3.1. First test example

As our first test example, we consider the following two delays R2- system:

x = Ax(t) + Bix(t — 1) + Byx(t — 15) (8)

-1 0 -2 1 -1 1
RN R R
1 1 -2 0 -2 0

Using the algorithm presented above, we obtain the following bifurcation point:

with

o =1.3011, Tf = 0.3884, ‘C; = 0.266. The corresponding trajectory is plotted in
Figures 1(a) and 1(b). Considering the bifurcation branch at the direction t; we plot

trajectories at the stability case (Figures 1(c) and 1(d)) and the instability case
(Figures 1(e) and 1(f)).
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-1.5 -1 -0.5 0 0.5 1 1.5

(b)

o

-1 -0.5 0 0.5 1 15

(d

(e)

0 5000 10000 15000

®

Figure 1. Representation of the trajectory of the solution for the first test example

starting at the initial state x(0) = (1.301, 1.3). For all figures, at the left side, the first

component of x(¢) is represented by solid line while the second is represented by

dashed line. The bifurcation trajectory and its phase portrait are represented in

Figures (a) and (b). Figures (c) and (d) represent the case of the stability. Figures (e)

and (f) illustrate the instability case.

3.2. Second test example

Here, we consider an example for the case of three delays:

x = Ax(t) + Byx(t — 1) + Byx(r — T5) + B3x(t — 13) (10)

with
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The computation gives the following bifurcation point o =1.4774,
7y =0.3560, 5 = 0.2524, 13 = 0.1016.

As in the previous test Example 1, we represent the bifurcation solution as well

as stability and instability solutions by considering the bifurcation branch at 7;-

direction.

0
% — 0 20 @ 2 -1 0 1 2
(a) (b)
15 15
1 1
05 05
0 k/‘* 0
0.5 05
) 10 20 30 0.5 0 05 1 15
() (d)
4000 4000
2000 i 2000
] "'\_ f: s 0
-2000 W -2000
4000, 10 20 30 “40%%00 0 1000 2000
©)] ()

Figure 2. Similarly to Figure 1, these curves illustrate the test Example 2. We can

notice the same conclusions even if the delays are different.

4. Concluding Remarks

In this paper, we have presented an efficient algorithm for determining Hopf
bifurcation points of parametric differential equations. The algorithm is general and
can be applied successfully to dynamical systems with multiple delays. Moreover,
this paper shows that algorithm is especially well suited for problems where delays
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are seen as parameters. As final remark, it should be noted that the approach

considered in this paper may provide useful properties of the bifurcation space

geometry.
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(7]
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on the interaction of a number of factors including cardiac output,
partial pressures of carbon dioxide (CO,) and oxygen (O,). Blood
flow through the lungs and tissues is also important for the human
respiratory system. Oxygen is transported to tissues while carbon
dioxide is transported away from them. This transport depends on two
factor: Cardiac output and blood flow. Although the natural state is
affected during a physical activity, the autoregulation mechanism tries
to maintain the cardiovascular-respiratory parameters to their natural
physiological states.

The purpose of this paper is to propose a bi-compartmental model for
cardiovascular-respiratory mathematical model including delays. A
such model allows to determine blood partial pressures according to
the heart rate system and the alveolar ventilation. Taking delays into
account, qualitative study of equilibrium allows to determine stability
and instability regions as well as the existence of limit cycles that are
characterized by oscillations.

Performance, against itself and possible accident during the physical
activity can be explained by this analysis. Then we present the
numerical simulation results that are based on a generic case. They
confirm perfectly theoretical results and they show pathological

situations.

1. Introduction

The main role of the cardiovascular system is to maintain blood flow in
the various regions of the human body. A such blood flow intervenes in
supplying nutriments to cells and eliminating toxins from the human body.
To ensure the needed energy during physical activity, a quantity of nutrients
is used to provide cells oxygen and to get rid of gaseous waste from the
human body (the carbon dioxide produced during muscle contraction). This
activity is possible thanks to the interaction between cardiovascular and
respiratory systems. At the beginning of physical activity, the consumption
of oxygen (Voz) increases according to its intensity to reach a maximum

level regardless of the increase in the workload. This level corresponds to the
maximal oxygen uptake (Vo2 ), beyond this value, any additional energy
max
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will provide acid to the human body. It is known that more a sportsman has
an important oxygen consumption, the more luck he has to realize a good
performance. Also, the volume of carbon dioxide (VCOZ) rejected by the

body during a physical activity increases proportionally with the intensity of
the effort. The exchange of the oxygen and the carbon dioxide is results in
the ventilation which is based on the breath in the lungs by diffusion
(exchange mechanism between the air contained in alveolar and blood cells
inside the blood capillaries). The alveolar ventilation is one of important
parameters when this exchange takes place. It is the same for the blood
pressures through arteries and veins that assure the transport of gases.

Since the 1950s, a great number of mathematical models of the
cardiovascular and respiratory system have been proposed. We can refer, for
example to [5, 7]. Many of these models are derived from the compartmental
analysis [8-10]. Among of them belong to the class of optimal control
problems governed by nonlinear differential equations. Those models allow
especially autoregulation mechanism which is complex. They also allow to
integrate the study of the control system during the transition between two
stable states such as rest and physical activity [17], rest and slow sleep [1].
Considering interactions between cardiovascular and respiratory systems a
such combination is necessary.

In this paper, we consider the global human cardiovascular and
respiratory system during physical activity. To explain his/her performance
and possible accidents during an intense physical activity, we introduce the
notion of delay in a global two compartments model. This model was
introduced in [13] to determine an optimal control system for healthy person
during a given physical activity. We discuss the existence of asymptotic
states and those presenting oscillation phenomena. It is exactly oscillatory
states that can allow bad performance and even cardiovascular accidents.

This paper is organized as follows. In the second section we focus on the
presentation of a bi-compartmental cardiovascular-respiratory model with
delays. In the third section the fundamental results will be proved and the
fourth section presents numerical simulation that illustrates the theoretical
results. The last section is interested in the appendix.
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2. The Model

It is known that the notion of delay approaches has been included in the
respiratory equations [3] and it has been applied to study the transition
between rest state and slow-wave sleep for healthy people and those that
present a congestive cardiac problem. The steady states were calculated by
Mancia [11], Somers et al. [16]. They gave an example to determine the
steady state that is compatible with the observations of healthy people and
data collection for people who present heart diseases.

The delays occur in cardiovascular respiratory system when the blood
transfer blood gases from the lungs to the tissue and return from tissue to
lungs thanks to pressure [2]. Dynamical simulations show that the delay
between tissue and lung compartments does not contribute to instability. This
result is the same for different values of delays, even for important delays.
The mathematical model we derive in this paper is based on the works of
Grodin et al. [5], Kappel et al. [8], Khoo et al. [10]. It uses an optimal control
approach to present the complex features of the control of the cardiovascular
component. The respiratory control has been considered as an optimal
control.

It is well known [13] that the systemic arterial pressure (P,5) and the
systemic venous pressure (R,) are important parameters during a physical
activity. The other parameters can indirectly influence the system through the
control of the heart rate (H) and the alveolar ventilation (V). In fact, the

blood flow in the arteries results in the heart beat action while the control of
the respiratory system acts through the alveolar ventilation. This is exactly
the process that supplies cells and tissues with the needed oxygen for the
metabolism and it gets ride them the carbon dioxide to realize good
performance during physical activity. The respiratory control system changes

the alveolar ventilation in response to the quantity of carbon dioxide CO,
and oxygen O, gases through the breath. Consequently, the alveolar

ventilation and cardiac output influence mutually. It is then obvious that
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exchanges between the systemic arterial compartment and systemic venous
compartment are controlled by heart rate (H) and alveolar ventilation (V A)

functions. The mechanism of this control is not direct and can be represented
by outflow functions between systemic arterial and systemic venous
compartments that depend on heart rate alveolar ventilation. Transport delays
appear as it takes time for tissue blood through systemic venous and arterial
compartments to reach the lungs and vice versa [2].

Taking delay into account, we propose as in [13], a bi-compartmental
model for determining blood partial pressures as functions of heart rate and
alveolar ventilation. For this purpose, we assume that exchanges between
systemic arterial and venous compartments are directly regulated by systemic

arterial and systemic venous delays 155 and 7, and indirectly by heart rate

H and alveolar ventilation \/A (see Fig. 1).

Using compartmental analysis the model equation can be formulated as
follows [13]:

Pl - p 1)+ (Ralt - ) x HHON D), ()
dp\clist(t) = —Rys(t) + (Pas(t - Tas))B x g(H(t) V(t)a), @)

where coefficients oo and B are constants of the model and f and g are
sufficiently regular positive functions. Taking physiological theories into
account, autoregulation function allows to maintain main parameters of
cardiovascular and respiratory system around their critical values which
depend on the type of physical activity. Those kind of values can also depend
on the state of human body for example rest or sleep.

Let Ps;, P, H® and V{ denote respectively the equilibrium parameters

of systemic arterial pressure, systemic venous pressure, heart rate and
alveolar ventilation. The equilibrium of the system (1)-(2) is as follows

{_Pefs + (Pves)auf =0,

3)
_Pv% + (P;S)BUS =0,
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where set U{ = f(H® V{), U5 = g(H®, V). We have therefore the

following result.

Q Q

as, Tas

Tissue g(H, V)

: JGAA) /4\
Pys Tus > < P r/

|

Systemic Systemic
Venous arterial
compartment compartment

Figure 1. A diagram of a delay bi-compartmental model of the human
cardiovascular and respiratory system [13]. f and g are functions depending

on heart rate (H) and alveolar ventilation (V), 155 and Tys respectively are
systemic arterial and systemic venous delays. State variables are: systemic

arterial pressure (P,g) and systemic venous pressure (P ).

Proposition 2.1. There exists a unique nontrivial steady state if and only
if ap = 1. Moreover, the steady state X® = (Pg, Py) satisfies the following
system

B 1
I:)ves = (Ule)l—ocB (US)I—QB’

| 1
Py = (UT)i—op (U3)i—ap-

“4)
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Remark 2.1. Relation (4) shows that it is possible to determine in unique
way the parameters o and [ if the functions f and g and the equilibrium states
are known. However, those parameters as well as the functions f and g can be
determined from the data assimilation by taking into account autoregulation

mechanism (see, for example, [13]). ]

3. Asymptotic and Oscillatory States

Setting Py (1) = Rs(t — 1) and P (t) = Pas(t — 155), the system
(1)-(2) becomes

dP
d?s = —Pas + (P, )” x Uy, )
dR
G = P + (P P xU,, (6)

where
Uyi(t) = F(H(t), Va(t)) and U,(t) = f(H (1), Va(t)).

Hence by linearizing the second member of the system (5)-(6) around the

point

(Pas» Puss P‘rasﬁ PTvs’ Uj,Up) = (P:S’ Pves’ Preas> Ptevss Ules US),
we obtain from the first order the following system

X(t) = AX(t)+ AyX(t = t55) + A X (t = 15) + DU(t) (7)

where we have set X (t) = (Pys(t) — P&, Ps(t) = PS)T,

A {—1 0} A { 0 O}
» Py = _
0 -l B(P)PT'US 0

[0 a(rf)*uf D{(Pfs)a 0 }
" L 0 } G
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It is known that stability study of solutions for the input-state system (7)
requires the stability of associated system without input [14]. Therefore we
have the following equation

X(t) = AX(t)+ A X(t — Tas) + AgX(t — Tys). (8)
From (8) the characteristic equation can be formulated as follows
| A+ Age e 4 Ae™us ) | = 0, 9)
where A denotes eigenvalue. After calculations, we obtain
22 420 +1— ape MrastTs) . (10)

The properties of the roots for equation (10) allow us to determine the
stability of the system (5)-(6). In particular, the steady state (P;s, Pves) is
locally asymptotically stable if and only if all the roots of the characteristic
equation (10) of the system without input (8) present negative real parts.
Thereafter, the study of the properties of roots for equation (10) will be
conducted by using two cases which depend on the values of delays. Those
values can be zero or not.

First case. 155 = 1y = 0
The characteristic equation (10) can be rewritten as follows
A +20+1—of = 0. (11)
This equation has exactly two following real roots:
A =-1++JoB; Ay =-1-+ op. (12)
Therefore we have the following result.

Proposition 3.1. If 14 = 1,5 = 0, then the steady state (Ps;, P%) is
asymptotically stable if and only if

ap <1 (13)
O
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From condition (13), we can note that if 0 < aff <1, then the roots
defined in (12) are real and negative. If of < 0, then these roots are complex
with Rg(A;) = Ra(Rhy) = —1. Thus, condition (13) naturally ensures the
existence of the asymptotic state for any positive initial condition. If aff > 1,
then these two roots are real and one of them is strictly positive. This last

condition ensures that the steady state is unstable. i

Second case. 144 # 0 and 1, # 0

Let us take T = 145 + Tyg, the characteristic (10) equation becomes
W +2h+1—ape™ = 0. (14)

This is a transcendental equation from which the set of roots can be
characterized as infinite cardinal [15]. Of course the set of roots depends on
the parameter t. Here the determination of parameters which ensure stability
may be very delicate. It would be useful to explore the study of the existence
of Hopf bifurcations. The Hopf bifurcation is manifested by the appearance
of limit cycles which provide oscillatory solutions to the system at
macroscopic level. Let us start by looking for imaginary roots of equation
(14). This leads to determination of m € R such that i® is a root. One can
note that if i is a root of (14), then —i® is its root too. Therefore we can
assume that o > 0. Replacing i® in (14) we have to find ® > 0 as solution

of the following equation

(1+i0)’ = ape™! (15)
from equation (15) we can deduct

[ (1 +i0)* [ = | op] (16)
hence

(0% +1)* = (aB)”. (17)

It is clear that, this equation admits a solution if and only if |af|> 1.

Therefore we have the following result.
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Proposition 3.2. Equation (14) admits imaginary roots if and only if
|aB|> 1. (18)
Moreover, under condition (18), there is a unique pair of conjugate

imaginary roots: + i/ af|—-1. o

Now let us assume that conditions of Proposition 3.2 yield. Then
equation (15) leads to determination of delays t whose pair of roots * iw

exists. From equation (15) it follows

2
l-o
o COS MT (19)
i—(g = —sin ®T (20)
from equations (19)-(20) it yields
tan(wt) = 22(0 . (21)
o -1

Hence, the set of delays whereby all roots of equation (15) are pure
imaginary, is given as follows

{rk = é[arctan 20 + knj, ®w=+-af-1, k=0, } (22)

|

Furthermore, thanks to equation (14), it is easy to establish the application
which associates T € Ry to Rg(A(t)), where A(t) is a regular solution of

(14). Therefore, we have the following result.

Proposition 3.3. Under condition (18) if t = 1, then +i\[af|—-1 isa
simple pair of pure imaginary roots for equation (14).
In addition, we have
AR (%)
dt

T=T(
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Proof. For any root A(t) of equation (14), let us take A(t) = p(t)
+1iq(t). It is easy to see that p(ty) =0 and q(tg) = ®, where o is defined

in (22). Differentiating equation (14) with respect to t, we obtain

(2n+2+ mﬁe‘“)% + (apre ™) = 0. (23)

Let us assume that A(t() is not a simple root. Then, we have (;—7; =0.
70

From (23) we obtain
imaBe_MTO)'TO = 0, hence aBe_k(TO)'TO =0.
This is not possible since af3 # 0. So * i® is a simple root.

In addition equation (23) allows us to deduct

d_ —hape™™
dt 20+ 2+ tape™

and from equation (14) it follows that

dr -MA +1)
dt 2+t +1)°

Then, after calculations we obtain

dRs (1) ~ 20° 0
dt B 2 2 )
=10 (2 + ’Eo) + (’C()O))
Finally, we have the following main result. O

Theorem 3.1.

1. If |aB|<1, then the system (1)-(2) admits a asymptotically stable

steady state for all t.

2. If ap < -1, then the system (1)-(2) admits

(a) a locally asymptotically stable steady state for t € ] 0, 1 |,
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(b) an unstable steady state for © > 1,

(c) a periodic solution of pulse , for t = 1.

Proof. Let us consider the following function
(1) > O, 1) =22 + 2L + 1 —ape™ (24)
and the following sets
B={\eC, Re(h)<0}
0B = {1 € C, Re(1) = 0}.
It is easy to see that
e O iscontinuous on C xR
e A — O(A, 1) is analytic for all 7.
We have to prove this theorem in three steps.

First step. Case aff <1

From (11) and (12), ®(X, 0) admits no zeros on &B and admits exactly

two roots in B. Thanks to the Rouché’s theorem (see Appendix A) it follows

that ©(), t) admits no zeros in 0B and has exactly two roots in B for all t in
a neighborhood of zero.

In addition, since ®(X, 0) has no zeros in C\B, the Rouché’s theorem
states that (), 1) has no zeros in C\B for all 1 in a neighborhood of zero.
Therefore, there exists a real a; > 0 such that for all t € [0, ay] the system
(1)-(2) is asymptotically stable.

Second step. Case |af | <1

By virtue of Proposition 3.2, ®(X, t) has no zeros on B for all t > 0,

in particular for t* = a. It follows from the first step that ®(, t*) has no

zeros on OB and has exactly two roots in B. Hence, there exists a real

a; > T such that for every 1 € [ay, & ]. The system (1)-(2) is asymptotically
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stable. This process can be indefinitely repeated. Hence we construct a
sequence (@) such that for all © € [a,_, a,], the function ®(A, t) has no
zeros on OB and it admits two roots in B. By construction the sequence (a;)
increases and it tends to infinity. Consequently we deduct that the system
(1)-(2) is asymptotically stable for all T > 0. This proves the first statement
of Theorem 3.1.

Third step. Case aff < -1

There exists a real t( given by formula (22) such that (A, t) admits
two pure imaginary roots for T = 1t and it does not admit imaginary roots
for © < ty. From the first step, ®(A, t) admits no zeros on 0B and it has
exactly two roots in B for t < ty. Then the system (1)-(2) is asymptotically

stable for t € |0, 7¢ [.

For t=r1(, conditions given by Proposition 3.3 yield. Hence the

equation (14) has a pair of simple roots A =zim and it satisfies

dRe (%)

e > 0. By applying the Hopf bifurcation theorem (see Appendix

=170

B), there exists an oscillatory solution with the period T = 2—(; for 1 =1

and unstable solutions for t > 1. O

4. Computational Experiments

To illustrate theoretical results presented in Section 3 we consider the
physiological parameters of a healthy woman who is 30 years old, whose
physical activity can be considered from rest state to fast running called
transitional phase. The choice is based on the fact that one of aerobics
exercises is running and it is well known that aerobics exercise is the proper
physical activity form for 30-40 year old women for the development of
cardiovascular system capacity [18]. The optimal values of parameters are
given in the Table 1.
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For our simulation we considered the functions f and g defined in [13]:
f(H,Va) ~ exp(0.5472V 23820 1 0.7518H 0-2846) (25)
g(H, Va) ~ Va exp(H 09985 _1.7440). (26)

Table 1. Optimal values of the parameter for a 30 years old woman in her
transition phase

Parameters Rest Fast running
Va 6 25
H 70 180
Pas 104 170
P 3.566 3.23

According to Table 1, initial values of systemic arterial and venous
pressures are respectively given by:

Pyso = 104 and Rg = 3.566. 27)

The equilibrium conditions of the input parameters, heart rate and alveolar
ventilation, are as follows:

He = 180 and Vp, = 25. (28)

For the calculation of solutions, we have distinguished two cases: the
existence of delays and their absence. Note that for all numerical examples
the initial values of the system, and, the input parameters are fix.

4.1. Firstcase. 154 = Ty =0
Using the state equation (4), we have the parameters of the model:
o = —0.0267 and = —0.1756. (29)

The corresponding solutions are illustrated in Fig. 2.
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Figure 2 illustrates the input parameters and the responses of the system
(1)-(2) without the transport delays for | af | < 1. By taking thee initial value
which is 70 beats/min (resp. 6 I/min), the Fig. 2(a) (resp. 2(b)) shows that the
heart rate (resp. alveolar ventilation) reaches the equilibrium value (180
beats/min for heart rate and 25 L/min for alveolar ventilation) after two (resp.
three) minutes at the beginning of physical activity and stabilizes itself.

The responses of the system shown in Fig. 2(c) and Fig. 2(d) concern the
systemic arterial pressure and systemic venous pressure. The systemic
arterial pressure starts at rest value at 104 mmHg and reaches 179 mmHg in
five minutes max, while the venous pressure has 3,566 mmHg as initial value
and decreases to 3.24 mmHg after 6.5 minutes, before stabilizing itself on
3.23 mmHg after 7 minutes.

These simulation results justify the theoretical ones according to
Proposition 3.1, because the curves of systemic arterial and systemic venous
pressures converge asymptotically to their equilibrium value. This situation
is considered as ideal since all system parameters evolve asymptotically to
performance optimal values.

4.2. Second case. Tag # 0, Ty # 0 and |af | <1

It should be noticed that for given values a and B, the equilibrium
pressure values are determined by formula (4). We present here some

examples of simulation corresponding to the condition | af | < .

Note that if |af| <1, then the system is asymptotically stable for any
delay value (see Theorem 3.1). But the system can be converge
asymptotically to the physiological healthy or pathological values. As
example, let us consider the parameters presented in Table 2.
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Alveolar ventilation

L/mn

Heart rate

g : B G 0 g
Time Time
(c) (d)

Systemic venous pressure

Systemic arterial pressure

Delay: Tye =0

mmHg

Delay: Tas =0

T 5 c 0 B c
Time Time

Figure 2. Case T4 = Ty = 0 and |af | < 1. Figures (a) and (b) represent

input parameters (heart rate and alveolar ventilation) while figures (c) and (d)
illustrate the response of the system (systemic arterial and venous pressure).

Table 2. Various values of parameters used for simulation solutions where

we assumed that T55 # 0, Tys # 0 and |op| <1

Example 1 o = —0.0267 and = —0.1756 PS =170 and RS = 3.23
Example 2 | a = -0.60 and § = —0.10 Paes - 65 and Pv% ~ 523
Example 3 | o = —-0.0001 and § = —0.008 p;s =175 and Pves =76

The corresponding graphs to Examples 1, 2 and 3 are respectively plotted
in Figs. 3 and 4 for the same input parameters (heart rate and alveolar

ventilation). For all these examples we consider the same delay values.

Figure 3 clarifies the theoretical results given by Theorem 3.1 where the
stability condition is |ap|<1. These figures show that the curves of
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systemic arterial and systemic venous pressures converge asymptotically at
equilibrium values. By taking the same values of a and [ as in the first case,
the Fig. 3(c) (resp. 3(d)) shows that systemic arterial (resp. systemic venous)
pressure decreases (resp. increases) slightly.

When we consider the case where the values of a and [ are different,
thatis a = —0.60 and B = —0.10, we find that the curves of systemic arterial
pressure (Fig. 3(e)) and systemic venous (Fig. 3(f)) are asymptotically stable
around the unwanted steady values (pathological values). This type of
variation can cause cardiovascular type extreme vasodilation (vasoplegia).

In the case where a = —0.0001 and B = —0.008, the respective curves of
systemic arterial pressure and systemic venous converge asymptotically at

the pathological steady values (Figs. 3(g), 3(h)).

This disease is due to an increase of extreme value for the systemic
venous pressure during physical activity up to 5.23 mmHg for Fig. 3.
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Figure 4. Case | aff | < 1 with the pair of delays (t55, Tys) = (0.031, 0.012).
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4.3. Third case. a3 < -1 and 145 # 0 and 1,5 # 0
In this case, Theorem 3.1 allows us to conclude that there exists a value

1o given by relation (22) such that we have stability for t < 7, existence of

oscillatory solutions for t = 7 and instability for t > 1.
For numerical simulation we consider the following values

a=3.5and B=-0.6 (30)
from which we obtain t; = 1.4523, and the corresponding steady pressures

Ps; = 40mmHg and Rj§ = 0.7 mmHg. 31

The solutions that correspond to different delay values are then shown in
Fig. 5.

In accordance with the stability condition aff < —1 of Theorem 3.1
(t <19), we see that response curves shown in Fig. 5(c) and Fig. 5(d)
converge asymptotically to values that are considered for physiological
pathology.

According to the conditions of Theorem 3.1 (t =1(), the curves of

systemic arterial and systemic venous pressures oscillate with a large
amplitude at the period T = 4.3264, such oscillations lead inevitably to

serious accidents (sudden death for instance).

Similarly, in agreement with Theorem 3.1 (1t > 1(), the curves

representing the systemic arterial and systemic venous pressures are unstable.
This instability leads to the same consequences as in the oscillatory case.
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5. Concluding Remarks

In bulk, we have introduced the delays to explain the existence or not of
performance cases (choice a and [3) for a person during physical activity. As
result, we can have performance for some persons while others have
cardiovascular risks or sudden death. On one hand the numerical simulation
results show the small values of pressures that can lead to serious accidents
of cardiovascular-respiratory system, and on the other hand they illustrate the
oscillatory cases between great and small values of pressures. The last case is
not realizable and it can be explained as sudden death. Our study can be used
to identify the values of o and 8 and predict whether the person can perform
or if there is high risk of accidents of cardiovascular-respiratory system for
him/her.

6. Appendix

6.1. Appendix A. Rouché’s theorem

Rouche’s theorem concerns the location of zeros of functions. The

statement of this theorem is given below.

Theorem 6.1. Let A be an open set in C, F be a metric space, f be a
continuous complex valued function in Ax F, such that for each a € F,
z — f(z, o) is analytic in A. Let B be an open subset of A, whose closure
B in C is compact and contained in A, and let o, € F be such that no
zero of f(z, ag) is on the frontier B. Then there exists a neighborhood W of

o in F such that:
e forany a e W, f(z, o) has no zeros on the frontier of B,

e for any a €W, the sum of the orders of the zeros of f(z, o)

belonging to B is independent of a.

For the proof of this theorem refer to [4] and [12].
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Rouché’s theorem, called also continuity theorem of zeros of differential
equations of a parametric function can be used for the study of delay systems

by taking A = C and F = R". This theorem shows that the number of zeros
with negative real parts and positive real parts remain the same if the
parameter varies until a zero will appear in the pure imaginary axis.

6.2. Appendix B. Existence of periodic solutions

Concerning the existence of periodic solutions, we will be interested in
consider a family of delay differential equations

dx
E = F(a, Xt), (32)

where F(a, @) admits continuous derivatives of first and second order with
respect to oo € R and ¢ € C. Let us assume that F(a, 0) =0 forall o € R

and let us take

oF(a, 0) X

L(a)X = oo

(33)

We make the following assumptions:

e Hj: the linear equation (33) has a pair of eigenvalue A, = fim,

e Hjy: R.(X(0)) # 0; where A(at) is a simple eigenvalue of L(a) for
|o| < ag, ag >0 (o exists because L(at) is of class C1).

The following theorem known as the theorem of Hopf bifurcation establishes
the existence of periodic solutions.

Theorem 6.2. Suppose that F(o, @) has continuous derivatives in
aeR and ¢ € C, F(a, 0) =0 for all o € R, and assumptions (H;) and

(H,) are verified. Then there exists ty, oy >0, functions af(t) € R,
oft) e R, all functions are of class C' for |t| < tg, such that equation (32)

has a solution w(t)-periodic of class C! for |t| <ty for | | < o denoted
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by x*(t). In particular, when o = 0, equation (32) has a periodic solution

of period 2—“.
®

The proof of Theorem 6.2 can be found in [6].

The assumption (H,) is called the assumption of transversality. It

means that there is an eigenvalue with zero real part, the branch of

eigenvalue appears through the pure imaginary axis.

Under the transversality and assumption (H;), equation (32) has a

periodic solution when a = 0 and the periodic solutions persist at least for

values of oo > 0 close to zero.
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